• Title/Summary/Keyword: Lightweight Wall

Search Result 101, Processing Time 0.03 seconds

A Study on the Fire Resistance Performance of Wood Framed Lightweight Wall which Including a Middle Lintel (중인방을 포함한 목골조 경량벽체의 내화성능에 관한 연구)

  • Yeo, In-Hwan;Cho, Bum-Yean;Min, Byung-Yeol;Yoon, Myung-O
    • Fire Science and Engineering
    • /
    • v.25 no.3
    • /
    • pp.91-98
    • /
    • 2011
  • This study is about fire resistance performance of wood framed lightweight wall including a middle lintel as a traditional wall form in Korea. The target wall is non-loadbearing system which constructed with $38{\times}89$ mm ($2"{\times}4"$) wood frame and fireproof gypsum board covering, including a middle lintel made of $150{\times}150$ mm section glue-laminated timber. As a test results, all specimens have showed fire resistant performance over 90 minutes and tests were maintained until flame occuring on Specimen-l, 2, 3 at 91 min, 97 min and 98 min respectively. Fire resistance of the heat side gypsum board was 45 minutes and charring rate of middle lintel was equivalant with that of usual timber. The wood stud inside wall system showed relatively quick combution characteristic when exposed to high temperature with no temperature rising delaying time caused by moisture evaporation because of the dehydration preceded during the early period of fire side gypsum board resist to heat.

Cyclic tests of steel frames with composite lightweight infill walls

  • Hou, Hetao;Chou, Chung-Che;Zhou, Jian;Wu, Minglei;Qu, Bing;Ye, Haideng;Liu, Haining;Li, Jingjing
    • Earthquakes and Structures
    • /
    • v.10 no.1
    • /
    • pp.163-178
    • /
    • 2016
  • Composite Lightweight (CL) insulated walls have gained wide adoption recently because the exterior claddings of steel building frames have their cost effectiveness, good thermal and structural efficiency. To investigate the seismic behavior, lateral stiffness, ductility and energy dissipation of steel frames with the CL infill walls, five one-story one-bay steel frames were fabricated and tested under cyclic loads. Test results showed that the bolted connections allow relative movement between CL infill walls and steel frames, enabling the system to exhibit satisfactory performance under lateral loads. Additionally, it is found that the addition of diagonal steel straps to the CL infill wall significantly increases the initial lateral stiffness, load-carrying capacity, ductility and energy dissipation capacity of the system. Furthermore, the test results indicate that the lateral stiffness values of the frames with the CL infill wall are similar to those of the bare steel frames in large lateral displacement.

Homogeneity of lightweight aggregate concrete assessed using ultrasonic-echo sensing

  • Wang, H.Y.;Li, L.S.;Chen, S.H.;Weng, C.F.
    • Computers and Concrete
    • /
    • v.6 no.3
    • /
    • pp.225-234
    • /
    • 2009
  • Dredged silt from reservoirs in southern Taiwan was sintered to make lightweight aggregates (LWA), which were then used to produce lightweight aggregate concrete (LWAC).This study aimed to assess the compressive strength and homogeneity of LWAC using ultrasonic-echo sensing. Concrete specimens were prepared using aggregates of four different particle density, namely 800, 1100, 1300 and 2650 kg/$m^3$. The LWAC specimens were cylindrical and a square wall with core specimens drilled. Besides compressive strength test, ultrasonic-echo sensing was employed to examine the ultrasonic pulse velocity and homogeneity of the wall specimens and to explore the relationship between compressive strength and ultrasonic pulse velocity. Results show that LWA, due to its lower relative density, causes bloating, thus resulting in uneven distribution of aggregates and poor homogeneity. LWAC mixtures using LWA of particle density 1300 kg/$m^3$ show the most even distribution of aggregates and hence best homogeneity as well as highest compressive strength of 63.5 MPa. In addition, measurements obtained using ultrasonic-echo sensing and traditional ultrasonic method show little difference, supporting that ultrasonic-echo sensing can indeed perform non-destructive, fast and accurate assessment of LWAC homogeneity.

Standardization of Impact Test Methods of Non-bearing Lightweight Wall for Building (건축용 비내력 경량벽체의 내충격성 시험방법의 표준화)

  • Kim, Ki-Jun;Choi, Soo-Kyung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.05a
    • /
    • pp.181-182
    • /
    • 2015
  • The use of non-bearing light weight wall has increased recently due to the increase of high-rise buildings and supply of long-life housing. Light weight wall has advantages such as reducing the self-weight of the building, convenience in installation, and shortening construction period, however, must have a sufficient strength to external force. This study standardized the impact resistance test method for light weight walls by using the actual impact load obtained through load analysis test in previous studies. The impact resistance test method was divided into the test method that uses soft body and the one that uses hard body. The size of specimen was set up as height 2.4m and width 3.0m. The size and shape of the body followed those used in BS 5234-2 and so on for the compatibility with the test method used overseas. The judgment criteria for impact resistance based on test results were not defined uniformly as the assessment of functional damage can vary depending on the type of material, structural method, purpose of wall, and so on even when the same impact load was applied.

  • PDF

Characteristics of Sound Reduction Index through Small Sized Lightweight Panel (소형 경량판넬을 이용한 차음성능 영향요인별 음향감쇠계수 분석)

  • Yang, Hong-Seok;Kim, Myung-Jun;Jeong, Gab-Chul
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.138-147
    • /
    • 2007
  • Recently, framed structure is increasingly being used as apartment structure due to the advantages during remodeling. Therefore, the use of lightweight panel as separating wall is increasing. To construct lightweight panel structures with sound insulation performance appropriate to the conditions of each field, measurement of sound reduction index(SRI) through panel structures should be performed. In this study, measurement of SRI through 46 kinds of panel structures was performed in the condition of various factors such as surface density, air space and absorber. The result showed that SRI of panel structures was generally higher by increasing of surface density. In the case of double panel with no absorber, SRI at below critical frequency was gradually increased according to rise of air space. Double panel with absorber make remarkable improvement in SRI at low frequency, but there is a little difference compared with SRI of double panel with no absorber over critical frequency.

  • PDF

Flexural Characteristics of Sheets Reinforced ALC Panel (시트 부착 ALC 패널의 휨강도 특성)

  • Lee, Dong-Weon;Kim, Jin-Man;Choi, Hong-Beom;Yu, Jae-Seong;Li, Kun-Mao;Sun, Joung-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.05a
    • /
    • pp.28-29
    • /
    • 2015
  • Although there are many applications with gypsum board because of its economical and construction advantages, four-layer construction technique, (hollow area between two-layer panel sets) is the general case to achieve the insulation, and resistance of horizontally applied force. Since this construction method has many problems such as complicate construction steps and increased cost, it is needed that the two-layer panel for improved construction and economical advantage for lightweight pane: thick panel with favorable performances. Therefore, in this research, based on the ALC panel with 10 to 30mm depth, feasibility of the paper reinforced panel as a lightweight wall material. As a result, favorable performance with increased flexural strength were achieved with paper reinforcement.

  • PDF

Density and Absorption Properties of the Lightweight Material According to the addition ratio of the Powdery and Liquid Type Modified Sulfur (분말형 및 액상형 개질유황의 첨가율에 따른 경량체의 밀도 및 흡수율 특성)

  • Lee, Yong;Kim, Heon-Tae;Bae, Kee-Sun;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.05a
    • /
    • pp.158-159
    • /
    • 2015
  • Worldwide refinery industry is a large amount of sulfur is produced by development. what that sulfur, it is produced through the desulfurization process and sulfur recover process. And it is made with the liquid state or solid-state. Also, the trend for structure is being changed from wall construction to rhamen construction. The amount of lightweight panels uesd in rhamen construction is also increasing. Therefore, In this study, it is intended to study density and absorption rate of the blast furnace slag lightweight material by using a sulfur lowered melting point. The plain has highest density and the density is lower when adding modified sulfur more. The plain has the lowest absorption and the absorption is higher according to adding modified sulfur more.

  • PDF

Numerical studies of steel-concrete-steel sandwich walls with J-hook connectors subjected to axial loads

  • Huang, Zhenyu;Liew, J.Y. Richard
    • Steel and Composite Structures
    • /
    • v.21 no.3
    • /
    • pp.461-477
    • /
    • 2016
  • Steel-concrete-steel (SCS) sandwich composite wall has been proposed for building and offshore constructions. An ultra-lightweight cement composite with density1380 kg/m3 and compressive strength up to 60 MPa is used as core material and inter-locking J-hook connectors are welded on the steel face plates to achieve the composite action. This paper presents the numerical models using nonlinear finite element analysis to investigate the load displacement behavior of SCS sandwich walls subjected to axial compression. The results obtained from finite element analysis are verified against the test results to establish its accuracy in predicting load-displacement curves, maximum resistance and failure modes of the sandwich walls. The studies show that the inter-locking J-hook connectors are subjected to tension force due to the lateral expansion of cement composite core under compression. This signifies the important role of the interlocking effect of J-hook connectors in preventing tensile separation of the steel face plates so that the local buckling of steel face plates is prevented.

Evaluation of Impact Resistance of Interior Stone Walls Constructed on the ALC Block Wall (ALC 블록 벽체에 시공한 석재 아트월의 내충격성 평가)

  • Ko, Bong-Cheon;Lee, Duck-ju;Kim, Hyun;Chol, Soo-Kyung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.05a
    • /
    • pp.10-11
    • /
    • 2019
  • Interior stone walls are using commonly in non-bearing lightweight walls of apartments. The stones of interior wall were two types, one is a granite stone, another is a marble stone. Granite stone is attached by the epoxy adhesive and marble stone is attached by dedicated anchor and fastener. The impact resistance test was carried out interior stone walls in accordance with KS F 2613. The test methods included the impact resistance tests by each of soft impact body and hard impact body. The results of the test have proved that interior stone walls can withstand the soft impact bodies and hard impact bodies that are likely to happen in everyday life.

  • PDF