DOI QR코드

DOI QR Code

Numerical studies of steel-concrete-steel sandwich walls with J-hook connectors subjected to axial loads

  • Huang, Zhenyu (Department of Civil and Environmental Engineering, National University of Singapore) ;
  • Liew, J.Y. Richard (College of Civil Engineering, Nanjing Tech University)
  • Received : 2015.09.19
  • Accepted : 2016.04.29
  • Published : 2016.06.30

Abstract

Steel-concrete-steel (SCS) sandwich composite wall has been proposed for building and offshore constructions. An ultra-lightweight cement composite with density1380 kg/m3 and compressive strength up to 60 MPa is used as core material and inter-locking J-hook connectors are welded on the steel face plates to achieve the composite action. This paper presents the numerical models using nonlinear finite element analysis to investigate the load displacement behavior of SCS sandwich walls subjected to axial compression. The results obtained from finite element analysis are verified against the test results to establish its accuracy in predicting load-displacement curves, maximum resistance and failure modes of the sandwich walls. The studies show that the inter-locking J-hook connectors are subjected to tension force due to the lateral expansion of cement composite core under compression. This signifies the important role of the interlocking effect of J-hook connectors in preventing tensile separation of the steel face plates so that the local buckling of steel face plates is prevented.

Keywords

Acknowledgement

Supported by : Maritime and Port Authority of Singapore (MPA)

References

  1. Abaqus 6.13 Online Documentation (2013), Abaqus Analysis User's Manual (C) Dassault Systemes, Hibbit, Karlsson and Sorensen, Inc., RI, USA.
  2. Aboobucker, M.A.M., Wang, T.Y. and Richard Liew, J.Y. (2009), "An experimental investigation on shear bond strength between steel and fresh cast concrete using epoxy", IES J Part A: Civil Struct. Eng., 2(2), 107-115. https://doi.org/10.1080/19373260902726768
  3. Barth, K.E. and Wu, H.Y. (2006), "Efficient nonlinear finite element modeling of slab on steel stringer bridges", Finite. Elem. Anal. Des., 42(14-15), 1304-1013. https://doi.org/10.1016/j.finel.2006.06.004
  4. An, C., Castello, X., Duan, M., Filho, R.D.T. and Estefen, S.F. (2012), "Ultimate strength behavior of sandwich pipes filled with steel fiber reinforced concrete", Ocean. Eng., 55, 125-135. https://doi.org/10.1016/j.oceaneng.2012.07.033
  5. Choi, B.J., Kang, C.K. and Park, H.Y. (2014), "Strength and behavior of steel plate-concrete wall structures using ordinary and eco-oriented cement concrete under axial compression", Thin-Wall. Struct., 84, 313-324. https://doi.org/10.1016/j.tws.2014.07.008
  6. Dabaon, M., El-Khoriby, S., El-Boghdadi, M. and Hassanein, M.F. (2009), "Confinement effect of stiffened and unstiffened concrete-filled stainless steel tubular stub columns", J. Constr. Steel. Res., 65(8), 1846-1854. https://doi.org/10.1016/j.jcsr.2009.04.012
  7. Epackachi, S., Whittaker, A.S. and Huang, Y.N. (2015), "Analytical modeling of rectangular SC wall panels", J. Constr. Steel. Res., 105, 49-59. https://doi.org/10.1016/j.jcsr.2014.10.016
  8. Hu, H.S. and Nie, J.G. (2015), "Numerical study of concrete-filled steel plate composite coupling beams", Thin-Wall. Struct., 96, 139-154. https://doi.org/10.1016/j.tws.2015.08.008
  9. Huang, Z.Y. and Liew, J.Y.R. (2015), "Nonlinear finite element modelling and parametric study of curved steel-concrete-steel double skin composite panels infilled with ultra-lightweight cement composite", Constr. Build. Mater., 95, 922-938. https://doi.org/10.1016/j.conbuildmat.2015.07.134
  10. Huang, Z.Y. and Liew, J.Y.R. (2016a), "Structural behaviour of steel-concrete-steel sandwich composite wall subjected compression and end moment", Thin-Wall. Struct., 98, 592-606. https://doi.org/10.1016/j.tws.2015.10.013
  11. Huang, Z.Y. and Liew, J.Y.R. (2016b), "Compressive resistance of steel-concrete-steel sandwich composite walls with J-hook connectors", J. Constr. Steel. Res. DOI: 10.1016/j.jcsr.2016.05.001
  12. Huang, Z.Y., Liew, J.Y.R., Xiong, M.X. and Wang, J.Y. (2015a), "Structural behavior of double skin composite system using ultra-lightweight cement composite", Constr. Build. Mater., 86, 51-63. https://doi.org/10.1016/j.conbuildmat.2015.03.092
  13. Huang, Z.Y., Wang, J.Y., Liew, J.Y.R. and Marshall, P.W. (2015b), "Lightweight steel-concrete-steel sandwich composite shell subject to punching shear", Ocean. Eng., 102, 146-161. https://doi.org/10.1016/j.oceaneng.2015.04.054
  14. Li, W., Han, L.H. and Chan, T.M. (2014), "Numerical investigation on the performance of concrete-filled double-skin steel tubular members under tension", Thin-Wall. Struct., 79, 108-118. https://doi.org/10.1016/j.tws.2014.02.001
  15. Liew, J.Y.R. and Sohel, K.M.A. (2009), "Lightweight steel-concrete-steel sandwich system with J-hook connectors", Eng. Struct., 31(5), 1166-1178. https://doi.org/10.1016/j.engstruct.2009.01.013
  16. Liew, J.Y.R. and Wang, T.Y. (2011), "Novel steel-concrete-steel sandwich composite plates subject to impact and blast load", Adv. Struct. Eng., 14(4), 673-687. https://doi.org/10.1260/1369-4332.14.4.673
  17. Liew, J.Y.R., Koh, C.G. and Sohel, K.M.A. (2009), "Impact tests on steel-concrete-steel sandwich beams with lightweight concrete core", Eng. Struct., 31(9), 2045-2059. https://doi.org/10.1016/j.engstruct.2009.03.007
  18. Long, Y.L. and Cai, J. (2013), "Stress-strain relationship of concrete confined by rectangular steel tubes with binding bars", J. Constr. Steel. Res., 88, 1-14. https://doi.org/10.1016/j.jcsr.2013.04.006
  19. Marshall, P.W., Sohel, K.M.A., Liew, J.Y.R., Yan, J.B., Palmer, A.C. and Choo, Y.S. (2012), "Development of SCS sandwich composite shell for Arctic Caissons", Proceedings of Offshore Technology Conference, Paper No. 23818, Houston, TX, USA, December.
  20. Nguyen, H.T. and Kim, S.E. (2009), "Finite element modeling of push-out tests for large stud shear connectors", J. Constr. Steel. Res., 65(10-11), 1909-1920. https://doi.org/10.1016/j.jcsr.2009.06.010
  21. Remennikov, A.M. and Kong, S.Y. (2012), "Numerical simulation and validation of impact response of axially-restrained steel-concrete-steel sandwich panels", Comp. Struct., 94(12), 3546-55. https://doi.org/10.1016/j.compstruct.2012.05.011
  22. Remennikov, A.M., Kong, S.Y. and Uy, B. (2013), "The response of axially restrained noncomposite steel-concrete-steel sandwich panels due to large impact loading", Eng. Struct., 49, 806-818. https://doi.org/10.1016/j.engstruct.2012.11.014
  23. Seifi, R. and Abbasi, K. (2015), "Friction coefficient estimation in shaft/bush interference using finite element model updating", Eng. Fail. Anal., 57, 310-322. https://doi.org/10.1016/j.engfailanal.2015.08.006
  24. Shanmugam, N.E., Kumar, G. and Thevendran, V. (2002), "Finite element modelling of double skin composite slabs", Finite. Elem. Anal. Des., 38(7), 579-599. https://doi.org/10.1016/S0168-874X(01)00093-2
  25. Smitha, M.S. and Kumar, S.R.S. (2013), "Steel-concrete composite flange plate connections-finite element modeling and parametric studies", J. Constr. Steel. Res., 82, 164-176. https://doi.org/10.1016/j.jcsr.2013.01.002
  26. Sohel, K.M.A. and Liew, J.Y.R. (2011), "Steel-concrete-steel sandwich slabs with lightweight core-static performance", Eng. Struct., 33(3), 981-992. https://doi.org/10.1016/j.engstruct.2010.12.019
  27. Sohel, K.M.A. and Liew, J.Y.R. (2014), "Behavior of steel-concrete-steel sandwich slabs subject to impact load", J. Constr. Steel. Res., 100, 163-175. https://doi.org/10.1016/j.jcsr.2014.04.018
  28. Sohel, K.M., Liew, J.Y.R. and Koh, C.G. (2015), "Numerical modelling of lightweight Steel-Concrete-Steel sandwich composite beams subjected to impact", Thin-Wall. Struct., 94, 135-146. https://doi.org/10.1016/j.tws.2015.04.001
  29. Wang, J.C. and Chen, Y.K. (2006), Application of ABAQUS in Civil Engineering, Zhejiang University Press, Hangzhou, P.R. China.
  30. Wang, Y.Y., Yang, Y.L. and Zhang, S.M. (2012), "Static behaviors of reinforcement-stiffened square concrete-filled steel tubular columns", Thin-Wall. Struct., 58, 18-31. https://doi.org/10.1016/j.tws.2012.04.015
  31. Xie, M., Foundoukos, N. and Chapman, N.C. (2004), "Experimental and numerical investigation on the shear behavior of friction-welded bar-plate connections embedded in concrete", J. Constr. Steel. Res., 61(5), 625-649. https://doi.org/10.1016/j.jcsr.2004.10.005
  32. Xu, C. and Sugiura, K. (2013), "Parametric push-out analysis on group studs shear connector under effect of bending-induced concrete cracks", J. Constr. Steel. Res., 89, 86-97. https://doi.org/10.1016/j.jcsr.2013.06.011
  33. Yan, J.B., Liew, J.Y.R and Zhang, M.H. (2014), "Tensile resistance of J-hook connectors used in Steel-Concrete-Steel sandwich structure", J. Constr. Steel. Res., 100, 146-162. https://doi.org/10.1016/j.jcsr.2014.04.023
  34. Zhang, K., Varma, A.H., Malushte, S.R. and Gallocher, S. (2014), "Effect of shear connectors on local buckling and composite action in steel concrete composite walls", Nucl. Eng. Des., 269, 231-239. https://doi.org/10.1016/j.nucengdes.2013.08.035
  35. Zheng, Y., Robinson, D., Su, T. and David, C. (2009), "Finite element investigation of the structural behavior of deck slabs in composite bridges", Eng Struct., 31(8), 1762-1776. https://doi.org/10.1016/j.engstruct.2009.02.047

Cited by

  1. Compressive resistance of steel-concrete-steel sandwich composite walls with J-hook connectors vol.124, 2016, https://doi.org/10.1016/j.jcsr.2016.05.001
  2. Comparison Between Destructive and Nondestructive Tests in the Evaluation of Abrasion Resistance of Concrete vol.46, pp.3, 2018, https://doi.org/10.1520/JTE20160159
  3. Mechanical properties and microstructure of ultra-lightweight cement composites with fly ash cenospheres after exposure to high temperatures vol.164, 2018, https://doi.org/10.1016/j.conbuildmat.2018.01.009
  4. Push-out test on the one end welded corrugated-strip connectors in steel-concrete-steel sandwich structure vol.24, pp.1, 2016, https://doi.org/10.12989/scs.2017.24.1.023
  5. Analytical solutions for sandwich plates considering permeation effect by 3-D elasticity theory vol.25, pp.2, 2016, https://doi.org/10.12989/scs.2017.25.2.127
  6. The multi-axial strength performance of composited structural B-C-W members subjected to shear forces vol.27, pp.1, 2016, https://doi.org/10.12989/scs.2018.27.1.075
  7. Finite element model for interlayer behavior of double skin steel-concrete-steel sandwich structure with corrugated-strip shear connectors vol.27, pp.1, 2018, https://doi.org/10.12989/scs.2018.27.1.123
  8. A numerical study on the seismic behavior of a composite shear wall vol.22, pp.3, 2018, https://doi.org/10.12989/cac.2018.22.3.279
  9. A Novel, Multifunctional, Floatable, Lightweight Cement Composite: Development and Properties vol.11, pp.10, 2016, https://doi.org/10.3390/ma11102043
  10. Axial Compressive Behavior of Steel-Damping-Concrete Composite Wall vol.9, pp.21, 2016, https://doi.org/10.3390/app9214679
  11. PERFORMANCE STUDY OF SC WALL BASED ON EXPERIMENT AND PARAMETRIC ANALYSIS vol.26, pp.3, 2020, https://doi.org/10.3846/jcem.2020.12181