• Title/Summary/Keyword: Lighting conditions

Search Result 517, Processing Time 0.027 seconds

Effect of Light and Feed Restriction During Rearing on Production Performance of Egg Strain Layers

  • Ahsan-ul-haq, Ahsan-ul-haq;Ahmad, Nazir;Rasool, Shahid;Shah, T.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.10 no.6
    • /
    • pp.657-664
    • /
    • 1997
  • 432 Babcock ISA white leghorn pullets reared for 8 weeks on a standard managemental conditions were exposed to feed/nutrient and light restrictions from 9 to 20 weeks of age. Four feeding regimes i. e. 100, 85 or 70 percent of the recommended allowance and low energy (2,500 Kcal/kg) low protein (13% CP) ration were fed each in the three light regimes i. e. (A) Natural day light starting from 13.24 hr/day at 8 weeks of age and ending 10.41 hr/day at the end of 20 weeks; (B) Constant 11 hr/day light and (C) starting with 13 hr/day at 8 weeks and decreasing @ 20 min/week till 20 weeks of age. At the age of 20 weeks all the birds were shifted to separate cages under uniform lighting feeding and management. During the 21st week light was increased to 12 hr a day and thereafter with an increase of 30 min per week, increased to 16 hr a day at the age of 29 weeks. From 20 weeks onward till 72 week age, all the birds were offered commercial layer rations ad libitum, prepared according to climatic conditions. The results of the study revealed that birds reared under natural and constant light had higher weights than decreasing light, yet they could not out perform during production period. The effect of feed and nutrient restriction, on the other hand, was found significant during rearing as well as production period. The birds exposed to higher level of feed and those exposed to nutrient restriction were lighter in weight. The 100% fed birds laid their first egg at an early age. However, those reared on 85% of the recommendation excelled all other groups in terms of produced number of eggs, egg mass, hen housed and hen day production and net returns.

Development of Traffic Accident Frequency Model for Evaluating Safety at Rural Signalized Intersections (지방부 신호교차로 안전성 판단을 위한 사고예측모형 개발)

  • Kim, Eung-Cheol;Lee, Dong-Min;Kim, Do-Hoon
    • International Journal of Highway Engineering
    • /
    • v.10 no.4
    • /
    • pp.53-63
    • /
    • 2008
  • Even though accident frequencies in roadway segments have been decreasing since 2000, there has been increasing the number of vehicle crashes at intersections. Due to this increase, safety problems at intersection recently started to be regarded as significant issues. The purpose of this study is to analyze the effects of road conditions, traffic operational conditions, and other influencing condition on intersection safety. Then a traffic accident frequency prediction model to evaluate the safety at intersections was developed based on the correlations between influencing factors and vehicle crashes. In this research, critically significant factors affecting vehicle crashes at rural four-legs signalized intersections were investigated. It was found that Poisson regression was the best fit method to developing a accident frequency modeling using the collected data in this study. Through this study, it was concluded that exclusive left turn lane, crosswalk, posted speed, lighting, angle, and ADT are significant influencing factors on the intersection safety.

  • PDF

A Study of Calculation Methodology of Vehicle Emissions based on Driver Speed and Acceleration Behavior (차량 주행상태를 고려한 차량 배출가스 산정 모형 구축)

  • Han, Dong-Hui;Lee, Yeong-In;Jang, Hyeon-Ho
    • Journal of Korean Society of Transportation
    • /
    • v.29 no.5
    • /
    • pp.107-120
    • /
    • 2011
  • Traffic signal is one of the major factors that affect the amount of vehicle emissions on urban highway. The amount of vehicle emissions in urban area is highly affected by the vehicle's cruising speeds heavily influenced by the traffic signal lighting conditions. It was attempted in this study to trace the changing patterns of the vehicle emissions by collecting the emission data from a set of simulation studies and by categorizing vehicle cruising conditions into four different groups: idling, acceleration, deceleration, and running at a constant speed. Authors propose a simple emission model prepared based on Kinematic theory. The validation test results showed that the amount of the emission estimated by the proposed model was relatively satisfactory compared to the one of the existing model employing the average speed data only as the determinant.

Effects of mobile texting and gaming on gait with obstructions under different illumination levels

  • Cha, Jaeyun;Kim, Hyunjin;Park, Jaemyoung;Song, Changho
    • Physical Therapy Rehabilitation Science
    • /
    • v.4 no.1
    • /
    • pp.32-37
    • /
    • 2015
  • Objective: This study was conducted to test the effects of mobile texting and gaming on gait with obstructions under different illumination levels. Design: Cross-sectional study. Methods: Twelve healthy adults aged 20 to 36 years (mean 23.5 years) were tested under six different conditions. All participants used touchscreen smartphones. Testing conditions included: 1) Walking with an obstruction under a bright illumination level; 2) walking with an obstruction with a low level of illumination; 3) walking with an obstruction while texting under a bright illumination level; 4) walking with an obstruction while texting with a low level of illumination; 5) walking with an obstruction while gaming under a bright illumination level; and 6) walking with an obstruction while gaming with a low level of illumination. All participants were asked to text the Korean national anthem by their own phone and play Temple Run 2 using an iPhone 5. Gait variances were measured over a distance of 3 m, and the mean value after three trials was used. A gait analyzer was used to measure the data. Results: Compared to normal gait with obstruction, gait speed, step length, stride length, step time, stride time, cadence while texting and gaming showed significant differences (p<0.05). Differences between the illumination levels included gait speed, step length, stride length, and step time (p<0.05) with no significant differences in stride time and cadence. Conclusions: Dual-tasking using a smartphone under low levels of illumination lowers the quality of gait with obstructions.

A Study on the Characteristics of Daylight Distributions by Different Sky Conditions and Controlled Roller Shade Heights (천공종류 및 롤러쉐이드의 제어된 높이에 따른 주광분포 특성에 관한 연구)

  • Park, Byoung-Chul;Lim, Ji-Sun;Kim, Yu-Sin;Lee, Jeong-Ho;Choi, An-Seop
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.2
    • /
    • pp.18-26
    • /
    • 2009
  • Daylight responsive dimming systems are one of lighting control systems which are to control artificial lightings using available daylight for energy savings. This system is not popular because useful daylight is usually blocked by uncontrolled passive shading systems in buildings. It is necessary to integrate daylight responsive dimming systems and automata! roller shading systems. In this research, mock-up test is performed to analyze the daylight distributions in three different rooms for integrated systems. Roller shades are installed in two rooms. One is fully downed and the other is controlled by sun profile angle. The other room has no shading system as a reference room.

A Difference Study on the Lighting Simulation of the Illuminance Values from Daylight for the Glass Greenhouse (자연광 투과에 따른 유리온실 조도분석에 관한 조명시뮬레이션 비교)

  • Lee, Boong-Joo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.8
    • /
    • pp.350-354
    • /
    • 2017
  • In this study, the DIAlux program was simulated for the optimal conditions of daylight and artificial light sources(LED) in a glass greenhouse. From the results of the daylight simulation, the optimal design conditions for the glass greenhouse were established, which had a $90^{\circ}$ installation angle and a higher transmittance of glass. In the case of growing lettuce in a glass greenhouse, it was compared with artificial light sources, the artificial light source (LED) was used to produce a power consumption effect of 41%. These results suggest that lettuce be grown in an energy saving glass greenhouse.

A Method to Compare Images for Managing Tools to Repair Ships (선박 수리장비 관리를 위한 이미지 비교기법)

  • Park, Sung-Hoon;Kim, Jin-Deog
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.10
    • /
    • pp.2489-2496
    • /
    • 2014
  • The existing ship repair tool management system based on hand writing has many problems such as frequent loss of tool and overdue. To solve this problem, same systems have adopted the bar-code system. However, the systems can't cope with a problem to substitute spurious tool for genuine one on bar-code damage. Therefore, additional validation steps are necessary in order to manage expensive ship repair tool. In this paper, we propose an image comparison method for ship repair tool management. To be more concrete, we propose a normalization method and determination conditions for image comparison to use characteristics of mobile device. The normalization method makes use of the characteristics of mobile device that provides functions of real time recording, overlapping and cropping images. The proposed method applies three conditions(sum of inner angles, size of angle, position of corner coordinates) into the comparison module. The implemented system shows good performance on change direction, lighting, size and etc. The accuracy is more than 95%.

Dynamic characteristics monitoring of wind turbine blades based on improved YOLOv5 deep learning model

  • W.H. Zhao;W.R. Li;M.H. Yang;N. Hong;Y.F. Du
    • Smart Structures and Systems
    • /
    • v.31 no.5
    • /
    • pp.469-483
    • /
    • 2023
  • The dynamic characteristics of wind turbine blades are usually monitored by contact sensors with the disadvantages of high cost, difficult installation, easy damage to the structure, and difficult signal transmission. In view of the above problems, based on computer vision technology and the improved YOLOv5 (You Only Look Once v5) deep learning model, a non-contact dynamic characteristic monitoring method for wind turbine blade is proposed. First, the original YOLOv5l model of the CSP (Cross Stage Partial) structure is improved by introducing the CSP2_2 structure, which reduce the number of residual components to better the network training speed. On this basis, combined with the Deep sort algorithm, the accuracy of structural displacement monitoring is mended. Secondly, for the disadvantage that the deep learning sample dataset is difficult to collect, the blender software is used to model the wind turbine structure with conditions, illuminations and other practical engineering similar environments changed. In addition, incorporated with the image expansion technology, a modeling-based dataset augmentation method is proposed. Finally, the feasibility of the proposed algorithm is verified by experiments followed by the analytical procedure about the influence of YOLOv5 models, lighting conditions and angles on the recognition results. The results show that the improved YOLOv5 deep learning model not only perform well compared with many other YOLOv5 models, but also has high accuracy in vibration monitoring in different environments. The method can accurately identify the dynamic characteristics of wind turbine blades, and therefore can provide a reference for evaluating the condition of wind turbine blades.

Spatial, Vertical, and Temporal Variability of Ambient Environments in Strawberry and Tomato Greenhouses in Winter

  • Ryu, Myong-Jin;Ryu, Dong-Ki;Chung, Sun-Ok;Hur, Yun-Kun;Hur, Seung-Oh;Hong, Soon-Jung;Sung, Je-Hoon;Kim, Hak-Hun
    • Journal of Biosystems Engineering
    • /
    • v.39 no.1
    • /
    • pp.47-56
    • /
    • 2014
  • Purpose: In protected crop production facilities such as greenhouse and plant factory, farmers should be present and/or visit frequently to the production site for maintaining optimum environmental conditions and better production, which is time and labor consuming. Monitoring of environmental condition is highly important for optimum control of the conditions, and the condition is not uniform within the facility. Objectives of the paper were to investigate spatial and vertical variability in ambient environmental variables and to provide useful information for sensing and control of the environments. Methods: Experiments were conducted in a strawberry-growing greenhouse (greenhouse 1) and a cherry tomato-growing greenhouse (greenhouse 2). Selected ambient environmental variables for experiment in greenhouse 1 were air temperature and humidity, and in greenhouse 2, they were air temperature, humidity, PPFD (Photosynthetic Photon Flux Density), and $CO_2$ concentration. Results: Considerable spatial, vertical, and temporal variability of the ambient environments were observed. In greenhouse 1, overall temperature increased from 12:00 to 14:00 and increased after that, while RH increased continuously during the experiments. Differences between the maximum and minimum temperature and RH values were greater when one of the side windows were open than those when both of the windows were closed. The location and height of the maximum and minimum measurements were also different. In greenhouse 2, differences between the maximum and minimum air temperatures at noon and sunset were greater when both windows were open. The maximum PPFD were observed at a 3-m height, close to the lighting source, and $CO_2$ concentration in the crop growing regions. Conclusions: In this study, spatial, vertical, and temporal variability of ambient crop growing conditions in greenhouses was evaluated. And also the variability was affected by operation conditions such as window opening and heating. Results of the study would provide information for optimum monitoring and control of ambient greenhouse environments.

Exploring Users' Desired Emotion in Product Light Focusing on the Refrigerator (제품 조명에 기대하는 소구 감성 탐색: 냉장고 사례를 중심으로)

  • Jeong, Kyeong Ah;Suk, Hyeon-Jeong
    • Science of Emotion and Sensibility
    • /
    • v.21 no.3
    • /
    • pp.3-16
    • /
    • 2018
  • Despite the substantial changes made in the product design field to adopt light as an essential design element, there has been little effort to define how customers respond emotionally to the light design of products. Therefore, it is necessary to analyze the emotional effect of light as a new design element. However, previous research focuses solely on deriving optimal lighting conditions to achieve particular emotional effects. Therefore, this paper investigates the customers' desired emotional effects of product's light design. We studied refrigerators that utilize light as the main design element of the product. We applied mixed methods by combining close-ended questions and open-ended question to efficiently derive the desired emotion. Participants were asked to choose the most favorable refrigerator image in each of the twelve image groups and indicate why they choose that image with the short-answer survey form. Approximately one thousand terms were collected, and those terms were classified into 29 groups using thesaurus relationships. The term groups were again classified into the four big emotion categories and labelled as "abstract quality," "light property," "space perception," and "visual comfort." Also, a model of the relationship between desired light style and light properties was proposed, since we observed the light properties related to three other categories. This study used mixed methods to identify the emotional value of a new design element. We suggest that the emotional categories derived and the proposed relationship model could be used to evaluate the product's light design.