• Title/Summary/Keyword: Light-weight impact sound

Search Result 61, Processing Time 0.021 seconds

The Effect of Aerated Concrete containing Foam Glass Aggregate on the Floor Impact Sound Insulation (발포유리 혼합기포 콘크리트의 바닥충격음 차단성능 영향에 관한 연구)

  • Yun, Chang-Yeon;Jeong, Jeong-Ho;Kim, Myung-Jun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.5
    • /
    • pp.414-422
    • /
    • 2013
  • As structure-borne sound, the floor impact sound is one of the serious noises in residential building. Most of heating system applied to the typical Korean residential building is floor heating system which is called ondol. The ondol usually consists of finishing material, mortar with heating coil, light-weight aerated concrete and reinforced concrete. This study focused on the isolation of heavy-weight impact sound and modification of mortar and light-weight aerated concrete. Specifically the glass foam aggregate was added on light-weight aerated concrete. Also, water-cement ratio and amount of cement on mortar were revised. The sound pressure level of heavy-weight impact was measured in reverberation chamber using both bang-machine and impact ball. The size of specimen was 1 m by 1 m. Substitution ratio of glass foam aggregate on light-weight aerated concrete shows relationship with heavy-weight impact sound pressure level. In addition, heavy-weight impact sound pressure level was decreased with increment of water-cement ratio and amount of cement on mortar.

Experiment Evaluation for the Heavy-weight Impact Sound of Dry Double-floor System - Effect of Rubber Hardness and Ceiling Structure - (건식이중바닥구조의 중량충격음에 대한 실험적 평가 - 지지구조 및 천장구조 구성에 따른 영향 -)

  • Yeon, Junoh;Kim, Kyoungwoo;Choi, Hyunjuong;Yang, Kwanseop;Kim, Kyungho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.1
    • /
    • pp.34-40
    • /
    • 2013
  • The 1st assessment(performance test) was applied to assure the floor impact sound performance for developing the dry double-floor with the change of rubber hardness of the upper panel's support and the ceiling structure of the sub-floor. Depends on the change of the rubber hardness in sub-structure, the heavy-weight sound impact value is improved up to 3 dB, and the light-weight sound impact value is moved up to 21 dB, comparing with the bare-slab. Also, the improved value for the floor impact sound conjugating with the sub-floor's ceiling was 5 dB. Based on this result, the 2nd assessment(performance test) was made the state that the rubber hardness of the sub-floor support was ranged between 50 and 70 for considering the stability of walking patients. In addition to this process, the assessment was carried out with a variety of ceiling structure applied to the dry double-floor structure with the air flow system on the sub-floor's ceiling. The result for the 2nd assessment proved that TYPEII-3 had the better sound reduction performance in the heavy-weight impact sound test than other types, and also for the light-weight impact sound TYPEII-3 had the 29 dB sound reduction performance overall. Henceforth, based on the result the research for the sound reduction performance from the floor impact sound shall be ongoing process as well as the development of a double-dry floor and a sound reduction ceiling to suitable on the field.

Evaluation for The Heavy-weight Impact Sound Reduction Performance of Dry Double-Floor System (건식 이중바닥구조의 중량충격음 저감성능 평가)

  • Yeon, Junoh;Kim, Kyoungwoo;Choi, Hyunjuong;Yang, Kwanseop;Kim, Kyungho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.10a
    • /
    • pp.280-285
    • /
    • 2012
  • The 1st assessment (performance test) was applied to assure the floor impact sound performance for developing the dry double- floor with the change of rubber hardness of the upper panel's support and the ceiling structure of the sub-floor. Depends on the change of the rubber hardness in substructure, the heavy-weight sound impact value is improved up to 3 dB, and the light-weight sound impact value is moved up to 21 dB, comparing with the bare-slab. Also, the improved value for the floor impact sound conjugating with the sub-floor's ceiling was 5dB. Based on this result, the 2nd assessment (performance test) was made the state that the rubber hardness of the sub-floor support was ranged between 50 and 70 for considering the stability of walking patients. In addition to this process, the assessment was carried out with a variety of ceiling structure applied to the dry doublefloor structure with the air flow system on the sub-floor's ceiling. The result for the 2nd assessment proved that TYPE-11 had the better sound reduction performance in the heavy-weight impact sound test than other types, and also for the light-weight impact sound TYPE-11 had the 29 dB sound reduction performance overall. Henceforth, based on the result the research for the sound reduction performance from the floor impact sound shall be ongoing process as well as the development of a double-dry floor and a sound reduction ceiling to suitable on the field.

  • PDF

A Study on the Sound Insulation for Void-deck Slab Combined with Deck Plate and Polystyrene Void Foam (데크플레이트와 경량성형재가 결합된 슬래브의 차음성능에 대한 실물실험 평가)

  • Roh, Young-Sook;Yoon, Seong-Ho
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.1
    • /
    • pp.60-65
    • /
    • 2015
  • This study is to explore floor impact sound and sound insulation of reinforced concrete structure with void-deck slab system which combines polystyrene void foam and T-shaped steel deck plate. A void-deck slab system can effectively reduce the amount of concrete used and hence the mass of a reinforced concrete slab. Also void slab system has dynamically favorable for bending. Three-bay 2-story building was constructed as a mock up test specimen using void-deck slab system and floor impact sound was measured to valuate sound insulation performance. Light weight floor impact and heavy weight floor impact were investigated. Light weight floor impact pressure levels were 32dB, 28dB, and 29db at representative locations which are $1^{st}$ level in the floor impact sound insulation performance grading system. The heavy-weight floor impact pressure levels were 44dB, 45dB, and 43dB at representative locations which are $2^{nd}$ level in the floor impact sound insulation performance grading system. Therefore void-deck slab system can be used in public housing apartment building in terms of not only effectively reduced construction materials but also floor impact sound insulation.

A Working plan of classification against Floor Impact Sound (바닥충격음의 등급화 시공방안)

  • Jeong Gab-Cheol
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2004.11a
    • /
    • pp.170-173
    • /
    • 2004
  • The law about floor impact sound goes into effect from March 23th in 2004 and is applying to new designs. According to the new law, the minimal of slab thickness is 180mm by standard floor structure and the new law presents about the minimal standard about heavy-weight impact sound. Also, It presents about classification of light-weight sound separate the minimal standard, so demand of consumers can be accepted. But a working plan of classification about light-weight sound is not presented in accordance with field test, so the problem that design can't be achieved although the aim of design is formed. This study shows contents to investigate for working of classification and will be helpful to designers and construction corporations.

  • PDF

Performance of floor coverings by impact sound (실 충격원에 대한 바닥마감재 성능 분석)

  • Chung, Jinyun;Im, Jungbin;Lee, Sungchan;Kim, Kyoungwoo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.419-422
    • /
    • 2014
  • Floor impact sound level is affected by various factors. This study was examined about impact sources and floor coverings influenced at floor impact sound. So this study wishes to get method to reduce sound pressure level of receiving room. Light-weight impact sound in mid frequency and Heavy-weight impact sound in low frequency was affected by floor coverings. Therefore, method to reduce floor impact sound level is to use proper floor coverings. Some coverings can amplify the heavy-weight impact sound in low frequency. Floor impact sound sources used measurement and analysis were standard heavy-impact source(Tapping, Bang, Ball) and living impact sources(Cleaner, Chair, Toy-car, Soccer ball). And Floor coverings used measurements were various thickness vinyl, laminate(or ply-wood) floor. Especially vinyl floor coverings were very effective method to reduce floor impact.

  • PDF

Performance Evaluation of the Floor Impact Sound Insulation in Steel Framed Modular House (강재프레임 모듈러주택의 바닥충격음 성능평가)

  • Chun, Young-Soo;Bang, Jong-Dae;Kim, Gap-Deug;Yoo, Song-Lee
    • Land and Housing Review
    • /
    • v.5 no.2
    • /
    • pp.81-89
    • /
    • 2014
  • This paper presents various attempts to secure the floor impact sound insulation performance on the dry floor system of steel framed modular house that lately attracted domestic attention. Test results show that in the condition of using dry floor system of D31(D32), the light-weight impact noise performance records the top level in the floor impact sound insulation performance grading system. the heavy-weight floor impact noise performance meets the minimum sound level limit in the floor impact sound insulation performance grading system that enacted regulation on housing construction standards.

An Analysis of the Influence Factors of Floor Impact Sound Levels (바닥충격음레벨 영향요인 분석)

  • 김경우;최현중;양관섭;이승언
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.255-260
    • /
    • 2003
  • The regulation for floor impact sound level is expected to be amended to 50㏈(L$\_$i, Fmax, AW/) and below in heavy-weight impact sound and 58㏈(L'$\_$n, AW/) and below in light-weight impact sound in Korea. The purpose of this paper is to analyze the influence factors of floor impact sound levels in apartments. The influence factors were air pressure of bang machine, height of microphones, data acquisition rate, etc. The air pressure range of bang machine were from 2.2 Pa to 2.6 Fa. Five microphones were installed at a height of 0.5m, 0.7m, 0.9m, 1.2m, 1.5m or 1.7m from floor level. The floor impact sound level was varied about 1-3㏈(L$\_$i, Fmax, AW/) in heavy-weight impact sound according to the influence factors.

  • PDF

Comparison of Rating Methods for the Floor Impact Sound Insulation Performance (바닥충격음 차단성능 평가방법의 상호비교)

  • Kim, Kyoung-Woo;Choi, Hyun-Jung;Yang, Kwan-Seop;Lee, Seung-Eon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.291-294
    • /
    • 2005
  • In this study, we compared and analyzed the floor impact sound insulation performance produced by the rating methods. The rating methods are using reversed A-weighting curve, A-weighted sound pressure levels and arithmetic average. On-site floor impact sound pressure levels of living room and room are measured. The results of this study are 1)the rating using reversed A-weighting curve for heavy-weight impact sound's standard deviation is lower than that of light-weight impact sound, 2)the number of rating using A-weighted sound pressure levels and arithmetic average is larger than that of using reversed A-weighting curve, and 3)the number of rating using reversed A-weighting curve mainly depends on impact sound pressure level of 63Hz in heavy-weight impact sound.

  • PDF

Evaluation of the Light-weight Floor Impact Sound Reduction Characteristics by Types of Resilient Material (완충재 종류에 따른 경량바닥충격음 저감특성 평가)

  • Kim, Kyoung-Woo;Yang, Kwan-Seop;Chung, Jin-Yeon;Im, Jung-Bin;Jeong, Gab-Cheol
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.830-834
    • /
    • 2008
  • Resilient materials are generally used for the floating floors to reduce the floor impact sound. Dynamic stiffness of resilient material, which has the most to do with the floor impact sound reduction. The resilient materials available in Korea include EPS (Styrofoam), recycled urethane types, EVA (Ethylene Vinylacetate) foam rubber, foam PE (Polyethylene), glass fiber & rock wool, recycled tire, foam polypropylene, compressed polyester, and other synthetic materials. In this study, we tested floor impact sound reduction characteristic to a lot of kinds of resilient material. The result of test showed that the amount of the Light-weight impact sound reduction appeared by being influenced from this dynamic stiffness of resilient material. As the decreasing dynamic stiffness of resilient material, the impact sound reduction amount is increased, especially in the low frequency domain.

  • PDF