• Title/Summary/Keyword: Light-weight building materials

Search Result 68, Processing Time 0.024 seconds

A Study on the Density and Thermal Conductivity of Rigid Polyurethane Foam According to Mixing Amount (혼합 양에 따른 경질 폴리우레탄폼의 밀도 및 열전도율에 관한 연구)

  • Shin, Joung-Hyeon;Jo, Su-Yeon;Jung, Ui-In;Kim, Bong-Joo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.127-128
    • /
    • 2021
  • Rigid urethane foam is widely applied because it is light and has superior insulation performance compared to insulation materials such as EPS or glass wool. However, it has the disadvantage of being vulnerable to fire. Therefore, in this study, before proceeding with the research to improve the fire resistance of the rigid polyurethane foam, we would like to investigate the change in density and thermal conductivity of the rigid polyurethane foam according to the change in the mixed weight of the main material and the curing agent. It was found that the density increased as the mixed weight increased. The thermal conductivity showed similar values overall. As for the density distribution, the central part was low and the outer part was high.

  • PDF

The structural behavior of lightweight concrete buildings under seismic effects

  • Yasser A.S Gamal;Mostafa Abd Elrazek
    • Coupled systems mechanics
    • /
    • v.12 no.4
    • /
    • pp.315-335
    • /
    • 2023
  • The building sector has seen a huge increase in the use of lightweight concrete recently, which might result in saving in both cost and time. As a result, the study has been done on various types of concrete, including lightweight (LC), heavyweight (HC), and ordinary concrete (OC), to understand how they react to earthquake loads. The comparisons between their responses have also been taken into account in order to acquire the optimal reaction for various materials in building work. The findings demonstrate that LWC building models are more earthquake-resistant than the other varieties due to the reduction in building weight which can be a curial factor in the resistance of earthquake forces. Another crucial factor that was taken into study is the combination of various types of concrete [HC, LC, and OC] in the structural components. On the other hand, the bending moments and shear forces of LC had reduced to 17% and 19%, respectively, when compared to OC. Otherwise, the bending moment and shear force demand responses in the HC model reach their maximum values by more than 34% compared to the reference model OC. In addition, the results show that the LCC-OCR (light concrete column and ordinary concrete roof) and OCC-LCR (ordinary concrete for the column and light concrete for the roof) models' responses have fewer values than the other types.

Utilization of Charcoal as an Environmentally Friendly Building Materials (II) - A Study on the Energy Saving and Sound Insulation Characteristics of Building Materials Prepared with Charcoal - (목탄을 이용한 친환경 건축자재 이용기술(II) - 목탄 함유 건축자재의 에너지 절감 및 차음 특성에 관한 연구)

  • Ahn, Byoung-Jun;Paik, Ki-Hyon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.39 no.1
    • /
    • pp.41-52
    • /
    • 2011
  • This study was carried out to investigate the effect of energy saving and sound insulation of building materials mixed with charcoal. To investigate the functionality of building based on the difference of construction materials, three different experimental buildings were constructed. They were buildings built with the conventional construction materials (A), the charcoal construction materials (B), and the charcoal-sericite construction materials (C). The study showed that energy consumption could be reduced approximately 9.5% and 14.5% by replacing A with B and C, respectively. Especially, it is revealed that the lower outdoor temperature was, the higher energy saving effect was. Also, after shutoff the boiler switch the decrease rate of room temperature of the one using B was lower than those of others using A and C so that the room temperature at the building using B was higher by $3.5{\sim}4.2^{\circ}C$ in the 1 meter air above the ground and by $4.4{\sim}5.4^{\circ}C$ on the floor surface after 12 hours passed. In the building noise test the heavy-and light-weight impact sound of the plate, represented by criterion of noise between floors in multi-story building, tended to decrease in the test sample containing charcoal.

Shear performance of green timber wall panels (그린팀버월 패널의 전단성능)

  • Kim, Yun-Hui;Shin, Il-Joong;Jang, Sang-Sik
    • Korean Journal of Agricultural Science
    • /
    • v.38 no.3
    • /
    • pp.541-547
    • /
    • 2011
  • Korean building industry was developed by concrete and steel construction. However, concrete and steel have some problems which low carbon storage capability and difficulty of recycling. According to many studies, timber has high carbon storage capability, high recycling capability and sustainable supporting capability. Focus on this factors of timber, make new wall structure as Green Timber Wall panels and check the shear performance to use wall system in housing construction such as light-weight timber construction and nondearing wall on other construction. In the results, B-4-B and B-4-S show similar modulus of shear stiffness on the table. GH-4-GH has slip shape failure mode between Green Timber Wall boards. GH-4-GV has most stable characteristic curve than other specimens.

The Evaluation of Fracture Toughness on Mode I for Twill CFRP/GFRP Laminated Hybrid Composites (능직 CFRP/GFRP 적층하이브리드 복합재의 Mode I 파괴인성 평가)

  • Roh, Young Woo;Kang, Ji Woong
    • Journal of the Korean Society of Safety
    • /
    • v.35 no.5
    • /
    • pp.9-14
    • /
    • 2020
  • In order to realize high strength and light weight for various industrial facilities and structural materials, various new materials are applied to product design. Among them, CFRP has excellent specific strength and non-rigidity, and the scope of use is expanding throughout the industry, such as mobility products and building materials. GFRP is cheaper than CFRP, and has excellent specific strength and non-rigidity, and has excellent heat resistance and sound insulation, so it has been adopted as a core material for flooring and interior flooring. CFRP of twill weave structure has better resistance to deformation of fiber than plain weave structure, so the outermost layer is applied as twill weave structure in product design. After fabrication with DCB specimens, Mode I fracture toughness was evaluated according to the crack length. As the crack length increases, the energy release rate and stress intensity factor values tended to decrease overall.

The Effect of Particle Size Distribution on the Physical and Optical Properties of Cenosphere (세노스피어(Cenosphere)의 입도 분포에 따른 물리적 특성 및 광학적 특성 평가)

  • Lee, Won-Jun;Hwang, Hae-Jin;Han, Kyu-Sung;Hwnag, Kwang-Taek;Cho, Woo-Suk;Kim, Jin-Ho
    • Korean Journal of Materials Research
    • /
    • v.27 no.7
    • /
    • pp.353-358
    • /
    • 2017
  • Recycled cenosphere, which is a hollow shaped particle from fly ash, has become attractive as a building material due to its light weight and excellent heat insulation and soundproof properties. In this paper, we investigated the effect of cenosphere size on the physical and optical properties. High brightness of cenosphere as raw material is required for a wide range of ceramics applications, particularly in fields of building materials and industrial ceramic tiles. Cenospheres were sorted by particle size; the microstructure was analyzed according to the cenosphere size distribution. Cenospheres were generally composed of quartz, mullite, and amorphous phase. Colour measurement corresponding to chemical composition revealed that the contents of iron oxide and carbon in the cenospheres were the major factors determining the brightness of the cenospheres.

The Physical Properties of the Block Using Flame Resistant EPS Wastes (폐 난연성 EPS의 혼합조건에 따른 재생골재 블록의 물성에 관한 실험적 연구)

  • Cho, Kwang-Hyun;Kim, Ji-Hyun;Chung, Chul-Woo;Lee, Jae-Yong;Lee, Soo-Yong
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.11a
    • /
    • pp.152-153
    • /
    • 2013
  • Based on the Fire Service Act of mandatory provision, new buildings are strictly forced to use fire protection materials. Flame resistant EPS is one of those materials. Unlike conventional EPS that can be fused to make EPS ingot and be recycled for various purposes, flame resistant EPS waste cannot be recycled due to the presence of protective coating that is applied to increase the fire protection properties of EPS. A suitable alternative that can process large amount of flame resistant EPS wastes needs to be developed, and one of the possible alternative is to use them as construction materials. In this research, experiments were designed to observe whether the flame resistant EPS wastes can be utilized as partial replacements of fine aggregates in cement mortar. The replacement ratio of waste EPS was varied, and its effect on compressive strength and absorption capacity was investigated. According to the experimental results, both compressive strength and absorption capacity met the Korean Standard specification for cement bricks and blocks, indicating that flame resistant EPS wastes can be used for construction purposes.

  • PDF

An Experiment Study on Floor-Impact Sound Insulation by Resilient Materials in Apartment Buildings (완충재의 종류에 따른 공동주택 바닥충격음 차단성능에 관한 실험연구)

  • Youn, Se Cheol;Oh, Jong Min
    • Journal of Environmental Impact Assessment
    • /
    • v.14 no.4
    • /
    • pp.217-225
    • /
    • 2005
  • In apartment buildings, floor-impact sound has bean regarded as the major source which induces complaints from residents. It is mainly due to the use of light-weight structures. The vibration produced by impact on one part of an apartment building would travel as far as the other parts of structure with a little alleviation. As a result, the impact sound from upstairs has been regarded as a main source of noise causing discontentment among occupants. This study was carried out to measure the floor-impact sound levels and evaluate the insulation performance of floor-impact sound for nine apartment buildings. The floor-impact sound levels were measured for twenty-five On-dol floor structures and various factors which influence the floor-impact sound were analyzed.

Evaluation of Floor Vibration Existing in Apartment Building (RC 아파트 바닥의 수직진동 성능 평가)

  • 이민정;한상환
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.967-972
    • /
    • 2003
  • In recent years building floors has become larger and more spacious due to the development of new design methods and high strength and light weight materials. However, such long span floor systems may provide smaller amount of damping and have longer period so that they would be more vulnerable to the floor vibration. This study attempts to evaluate the performance of the floors in typical apartment buildings. Four different floors with the area of 43.2$m^2$, 41.44$m^2$, 34.5$m^2$, and 28.89$m^2$ were investigated. The guideline provided by AISC(997) and human perception level of Korean people proposed by S. W. Han(2003) are used to check the acceptability of the floor vibration.

  • PDF

A Study on the Development of Neural Network Predictive PID Controller for the Vibration Control of Building (빌딩의 진동제어를 위한 신경회로망 예측 PID 제어기 개발에 관한 연구)

  • 조현철;이진우;이권순
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.03a
    • /
    • pp.71-74
    • /
    • 1998
  • In recent years, advances in construction techniques and materials have given rese to flexible light-weight structures like high-rise buildings and long-span bridges. Because these structures extremely susceptible to environmental loads, such as earthquakes and strong winds, these random loadings usually produce large deflection and acceleration on these structures. Vibration control system of structures are becoming an integral part of the structural system of the next generation of tall building. The proposed control system is applied to single degree of structure with mass damping and compared with conventional PID and neural network PID control system.

  • PDF