• Title/Summary/Keyword: Light-weight Structures

Search Result 285, Processing Time 0.031 seconds

The Process Factor Characteristics and Surface Roughness Prediction of Engineering Plastics in CNC Turning (엔지니어링 플라스틱의 CNC 선반가공에서 공정변수 특성 및 표면거칠기 예측)

  • Lee, Jung-Hee;Eom, Seong-Jin;Kwak, Gil-Dong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.6
    • /
    • pp.73-79
    • /
    • 2020
  • Although engineering plastics that are light-weight and have excellent mechanical performance have been widely applied in various industries in place of steel structures to reduce the burden of cost and time, there have been few studies related to their surface roughness. This study aims to evaluate the optimal effects of feed rate, cutting speed, and depth of cut as cutting parameters as well as nose angle on the surface characteristics of MC nylon in CNC lathe machining. To determine the best conditions under different nose radii, the experiments were performed based on the Taguchi L9(34) orthogonal array method, in which the resulting data was analyzed using the S/N ratio and ANOVA. Results indicate that the most significant contribution was feed rate followed by nose angle and cutting speed, whereas the depth of cut did not influence the performance. This study demonstrates that the suggested method for improving the surface finishing of MC nylon is efficient compared with results obtained from experimentation and prediction.

Characterization of Nanoscale Electroactive Polymers via Piezoelectric Force Microscopy

  • Lee, Su-Bong;Ji, Seungmuk;Yeo, Jong-Souk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.232.2-232.2
    • /
    • 2015
  • Piezoelectric force microscopy (PFM) is a powerful method to characterize inversed piezoelectric effects directly using conductive atomic force microscopy (AFM) tips. Piezoelectric domains respond to an applied AC voltage with a characteristic strain via a contact between the tip and the surface of piezoelectric material. Electroactive piezoelectric polymers are widely investigated due to their advantages such as flexibility, light weight, and microactuation enabling various device features. Although piezoelectric polymers are promising materials for wide applications, they have the primary issue that the piezoelectric coefficient is much lower than that of piezoelectric ceramics. Researchers are studying widely to enhance the piezoelectric coefficient of the materials including nanoscale fabrication and copolymerization with some materials. In this report, nanoscale electroactive polymers are prepared by the electrospinning method that provides advantages of direct poling, scalability, and easy control. The main parameters of the electrospinning process such as distance, bias voltage, viscosity of the solution, and elasticity affects the piezoelectric coefficient and the nanoscale structures which are related to the phase of piezoelectric polymers. The characterization of such electroactive polymers are conducted using piezoelectric force microscopy (PFM). Their morphologies are characterized by field emission-scanning electron microscope (FE-SEM) and the crystallinity of the polymer is determined by X-ray diffractometer.

  • PDF

Practical Vibration Analysis of Deck Floor Slab (데크 바닥판 구조물의 실용적인 진동해석)

  • Kim, Gee-Cheol
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.18 no.1
    • /
    • pp.61-69
    • /
    • 2005
  • As long-span and light-weight deck floor slab are flexible and have low inherent damping, the significant floor vibration could be induced by residents' activities. These floor vibrations affect to safety and serviceability of building structures. So the vibration criteria are applied to the quality assessment of building structure. Therefore, the accurate vibration analysis should be performed for the correct assessment of deck floor slab. In this paper, practical analysis method with considering orthotropic rigidity of deck floor is proposed tot the accurate vibration analysis of dock floor slabs with form deck plates.

A Study on the Typhoon Disaster of Greenhouse (시설원예용 플라스틱 하우스의 태풍피해에 관한 연구)

  • 윤용철;서원명;윤충섭
    • Journal of Bio-Environment Control
    • /
    • v.4 no.2
    • /
    • pp.167-174
    • /
    • 1995
  • This study was carried out to find a way of improving the windproof capability of greenhouse foundations. Generally, greenhouses are often collapsed due to the strong winds, because they are very light weight structures. In such a critical situations, the foundations are very often subjected to uplift and vibration at the same time. This paper describes both the wind disaster of greenhouses by the typhoon FAEY and the uplift resistance of greenhouse foundations. Followings are the results obtained from this study ; Judging from the view point of year round cultural aspects, it is recommended that some measures be taken for the preventions of greenhouse film ruptures because greenhouse structural damages are found to be directly associated with the local rupture of cover film. In the case of surveyed area, movable pipe-houses or pipe-houses of 1-2W type were found to be completely destroyed when the maximum instantaneous wind velocity was over 30m/sec or so. In the case of movable pipe-houses, the uplift resistance of greenhouse was expected to increase with the increase of pipe diameter and/or the embedment pipe length. But at present situations there is a limitation in raising the uplift resistance of movable pipe-house, because pipe diameters as well as pipe lengths customarily selected by farmers are quite a much limited.

  • PDF

Modelling of Structural Adhesives for Body Stiffness Analysis in Automobile (차체 강성해석을 위한 구조용 접착제 해석모델링 연구)

  • Seo, Seong-Hoon;Joo, Jae-Kap
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1410-1414
    • /
    • 2007
  • In modern automobile body manufacturing, the structural adhesive bonding is recognized to one of new joining techniques for the purpose of light weight body and its application scope in the automobile body has been gradually magnified. Specially, the structural adhesives have the advantages of not only enhancing the design flexibility of automobile body, but also improving automobile performances such as stiffness, crashworthiness and durability. In order to evaluate the performance simulation of the automobile body applied with structural adhesives, it is necessary to develop modeling techniques in the structural adhesives in advance. This paper aims to investigate modeling methodology of structural adhesive junctions for body stiffness simulation. Two main modeling points are the element selection for adhesives and the connectivity between adhesives and adherends. Both of the 1D element used in classical modeling and the 3D element which are more accurate are considered for the adhesives, and the congruent and incongruent mesh models of the adherends are compared for connectivity modeling. By applying the several kinds of modeling methodology to the simple structures, the simulation results are compared and some modeling guidelines are obtained.

  • PDF

The Study of Improvement of the Void Slab Applying the Impedance Method (임피던스법을 이용한 보이드 슬라브의 개선방안에 관한 연구)

  • 오재응;김영식
    • Journal of KSNVE
    • /
    • v.11 no.2
    • /
    • pp.276-284
    • /
    • 2001
  • In apartment buildings, floor-impact sound has been regarded as the major source that causes complaints from residents. It is mainly due to the use of light-weight structures and the lack of researches in terms of floor-impact sound. The purposes of this study are analyzing the characteristics of vibration response and sound radiation of 12type void slabs in the improvements void slab by impedance method and finding the fittest improvements void slab on the 12type void slab. The main results of this study are summarized as below: (1) In the $\frac{1}{3}$ octave band level of sound radiation, $\frac{1}{3}$ octave band levels, measured from four-divided improvement void slab(No.8) and eight-divided improvement void slab(No.12), are 10~25 dB lower than that of standard void slab(No.1) in the 1250 Hz. Especially, eight-divided improvement void slab(No.12) is the best void slab in terms of radiation efficiency of sound level. (2) In the correlation relation of acceleration and sound radiation, standard void slab(No.1), four-divided improvement void slab(No.8), SK standard four-hole void slab(No.10), and eight-divided improvement void slab(No.12) are positive correlation relation.

  • PDF

Repair of precracked RC rectangular shear beams using CFRP strip technique

  • Jayaprakash, J.;Samad, Abdul Aziz Abdul;Abbasovich, Ashrabov Anvar;Ali, Abang Abdullah Abang
    • Structural Engineering and Mechanics
    • /
    • v.26 no.4
    • /
    • pp.427-439
    • /
    • 2007
  • The exploitation of fibre reinforced polymer composites, as external reinforcement is an evergreen and well-known technique for improving the structural performance of reinforced concrete structures. The demand to use FRP composites in the civil engineering industry is mainly due to its high strength, light weight, and stiffness. This paper exemplifies the shear strength of partially precracked reinforced concrete rectangular beams repaired with externally bonded Bi-Directional Carbon Fibre Reinforced Polymer (CFRP) Fabrics strips. All specimens were cast in the laboratory environment without any internal shear reinforcement. The test parameters were longitudinal tensile reinforcement, shear span to effective depth ratio, spacing of CFRP strips, and orientation of CFRP reinforcement. It mainly focuses on the shear capacity and modes of failure of the CFRP strengthened shear beams. Results have shown that the CFRP repaired beams attained a shear enhancement of 32% and 107.64% greater than the control beams. This study underscores that the CFRP strip technique significantly enhanced the shear capacity of precracked reinforced concrete rectangular beams without any internal shear reinforcement.

Design strategy of hybrid stay cable system using CFRP and steel materials

  • Xiong, Wen;Cai, C.S.;Xiao, Rucheng;Zhang, Yin
    • Steel and Composite Structures
    • /
    • v.13 no.1
    • /
    • pp.47-70
    • /
    • 2012
  • To enhance cable stiffness, this paper proposed a combined application of carbon fiber reinforced polymers (CFRP) and steel materials, resulting in a novel type of hybrid stay cable system especially for the cable-stayed bridges with main span lengths of 1400~2800 m. In this combination, CFRP materials can conserve all their advantages such as light weight and high strength; while steel materials help increase the equivalent stiffness to compensate for the low elastic modulus of CFRP materials. An increase of the equivalent stiffness of the hybrid stay cable system could be further obtained with a reasonable increase of its safety factor. Following this concept, a series of parametric studies for the hybrid stay cable system with the consideration of stiffness and cost were carried out. Three design strategies/criteria, namely, best equivalent stiffness with a given safety factor, highest ratio of equivalent stiffness to material cost with a given safety factor, and best equivalent stiffness under a given cost were proposed from the stiffness and cost viewpoints. Finally, a comprehensive design procedure following the proposed design strategies was suggested. It was shown that the proposed hybrid stay cable system could be a good alternative to the pure CFRP or traditional steel stay cables in the future applications of super long span bridges.

The Bearing Capacity of Top Base Foundations in Soft Ground (연약지반상 팽이기초 적용에 따른 지지특성)

  • Kim, Chan-Kuk;Kim, Hak-Moon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.401-414
    • /
    • 2010
  • Top Base Foundation(TBF) is a stabilization method for light weight structures particularly in the soft ground. It is widely used for the increment of bearing capacity and restraining settlement of foundations when the bearing capacity of ground is not enough. However, when the design values from exiting Japanese standard are compared with the observation values from the field measurement, the bearing capacity of exiting standard estimated smaller For this reason, it is necessary to establish more reasonable prediction technique considering to understand the behavior of TBF in soft ground. In this study, 1/5 scale model tests were performed in the laboratory. Also, full scale tests were carried out in order to investigate the behavior of TBF with various shapes. In addition, about 100 sites measurement data were evaluated to investigate the behavior of TBF in various ground conditions. Based on the results of the model tests and field measurement data, it was possible to establish more reasonable the bearing capacity equation of TBF considering various N-value of soil, the effect of underground water and failure shapes.

  • PDF

Optic-axis Alignment and Performance Test of the Schwarzschild-Chang Off-axis Telescope

  • Park, Woojin;Pak, Soojong;Chang, Seunghyuk;Jeong, Byeongjoon;Lee, Kwang Jo;Kim, Yonghwan;Ji, Tae-Geun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.1
    • /
    • pp.56.4-57
    • /
    • 2017
  • The Schwarzschild-Chang off-axis telescope is a "linear astigmatism-free" confocal system. The telescope comprises two pieces of aluminum-alloy freeform mirrors that are fabricated with diamond turning machine (DTM) process. We designed optomechanical structures where optical components in the telescope system can be adjustable on a linear stage. Optomechanical deformation caused by the weight of system itself and its temperature variation is analyzed by the finite element analysis (FEA). The results show that the deformation is estimated in the tolerance range. For the optic-axis alignment of telescope system, three-point alignment (TPA) method is chosen. The TPA method uses three parallel lasers and a plane mirror. Point source images were taken from collimated light and field observation. The performance of optical system was tested by point spread function and aberration measurement of the point sources.

  • PDF