• Title/Summary/Keyword: Light-emitting diode communication

Search Result 149, Processing Time 0.024 seconds

Data Transmission Algorithm for LED Communication Systems (LED 통신 시스템의 데이터 전송 알고리즘)

  • Kim, Kyung Ho;Hwang, Yu Min;Kim, Jin Young
    • Journal of Satellite, Information and Communications
    • /
    • v.8 no.2
    • /
    • pp.44-49
    • /
    • 2013
  • LED communication is a wireless communication technology to transmit information using visible light coming out from the LED(Light Emitting Diode). It is a technique that can overcome RF(Radio Frequency) communication problems that are frequency allocations, human body hazards, security vulnerabilities, and interference between electronic devices. As a technique that can be used as lighting and communications with using LED, LED communication is suitable for ubiquitous environment. This paper introduces the process of data transmission algorithm for LED communication systems algorithm using LED, PD(Photodiode), and MCU(Micro Controller Unit).

Implementation of Transceiver for Optical Wireless Communication System (광무선통신 시스템의 송수신기 구현)

  • Lee, Sun Yui;Kim, Jin Young
    • Journal of Satellite, Information and Communications
    • /
    • v.8 no.1
    • /
    • pp.71-76
    • /
    • 2013
  • In this paper, a transceiver of VLC (Visible Light Communication) using LED white lighting has been implemented. The transmitted waveforms of LED and PD (Photo Diode) of the received signal are analyze to restore VLC data. Audio signal was successfully transmitted to demonstrate possibility and potential of optical wireless communication systems. Various modulation formats are considered to evaluate and compare performance in diverse channel conditions.

Study on 3-dimension Image Process based on Organic light Emitting Diode (유기발광소자 (Organic Light Emitting Diode)를 이용한 3차원 영상에 대한 연구)

  • Lee, Jung-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.497-499
    • /
    • 2005
  • A portable terminal assistant market grows rapidly every year and it requires many change in research on display devices. Among many newly developing methods, OLED(Organic Light Emitting Diode) is considered an advanced flat display device because its excellent characteristics, including high speed response, full color performance, low power consumption and flux of panel. However changes in the market of display shows that the market will require 3-dimensional images, but it is hard for existing 2-dimensional displays to make 3-dimensional images. Therefore we will try to find various methods such as holograms. In this paper, we will show existing flat displays can make 3-dimensional images by applying Lenticular Screen printing techniques on the organic semiconductor display device.

  • PDF

Trends Detection of Display Research Areas by Bibliometric Analysis (과학계량학 기법을 이용한 디스플레이 연구영역의 트렌드 탐지)

  • Ahn, Se-Jung;Shim, We;Lee, June-Young;Kwon, Oh-Jin;Noh, Kyung-Ran
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.7 no.6
    • /
    • pp.1343-1351
    • /
    • 2012
  • In this study, trends for five research areas of LED(Light Emitting Diode), OLED(Organic Light Emitting Diode), LCD(Liquid Crystal Display), PDP(Plasma Display Panel) and CRT(Cathode Ray Tube) are investigated using bibliometric analysis. The papers and patents citation data were extracted from Scopus and USPTO databases, respectively. We could figure out the research trends by the number of publications and citation information. We prospect the current interests and future trends by investigating the development process of the 5 research areas as function of time.

LED IT-based System sensor network transceiver module research (LED IT 기반 시스템 센서 네트워크 송수신 모듈 연구)

  • Jang, Tae-Su;Lee, Jun-Myung;Choi, Jung-Won;Kim, Yong-kab
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.10a
    • /
    • pp.11-12
    • /
    • 2012
  • In this paper, efficient visible light communication technology LED (Light Emitting Diode) lighting through the existing infrared sensor used for performance analysis of transmitting and receiving is possible. LED utilizes lighting by changing light into electricity. Lighting features while maintaining the basic principles of flashing LED and PD (Photo Diode) to send and receive communications from LED lighting communication convergence principle be realized simultaneously enabling. Multiple IT applications under the basic structure of LED technology development, and the current was encountered in real life. LED lighting anywhere with wireless communication technology that can, in order to ~ 1m above the initial value by taking advantage of the system H/W and infrared sensors(PD) are widely used in the entire system that can improve the speed of visible light data transmission system is finished. LED module that is used to communicate whether the performance analysis, For forecasting and communication distance on the LED and infrared sensor configuration of the implementation of the research is to study about the possibility of application methods and indicates.

  • PDF

Study of Modulation Effect in Integrated Interface Under Controlling Switching Light-Emitting Diode Lighting Module

  • Hong, Geun-Bin;Jang, Tae-Su;Kim, Yong-Kab
    • Transactions on Electrical and Electronic Materials
    • /
    • v.12 no.6
    • /
    • pp.253-257
    • /
    • 2011
  • This study was carried out to solve problems such as radio frequency band depletion, confusion risk, and security loss in existing visible wireless communication systems, and to determine the applicability of next-generation networks. A light-emitting diode (LED) light communication system was implemented with a controlling switching light module using the ATmega16 micro-controller. To solve the existing modulation effect and disturbance in visible light communication, an integrated interface was evaluated with a driving light module and analyzes its reception property. A transmitter/receiver using the ATmel's micro-controller, high-intensity white LED-6 modules, and infrared sensor KSM60WLM and visible sensor TSL250RD were designed. An experiment from the initial value of distance to 2.5 m showed 0.46 V of the voltage loss, and if in long distance, external light interference occurred and light intensity was lost by external impact and thus data had to be modified or reset repeatedly. Additionally, when we used 6 modules through the remote controller's lighting dimming, data could be transmitted up to 1.76 m without any errors during the day and up to 2.29 m at night with around 2~3% communication error. If a special optical filter can reduce as much external light as possible in the integrated interface, the LED for lighting communication systems may be applied in next generation networks.

Pixel driving method of OLED(Organic Light-Emitting Diode) Display (OLED 디스플레이 픽셀 구동방식)

  • Lee Jung-Ho;Chae Kyu-Su;Kim Min-Nyun
    • Proceedings of the KAIS Fall Conference
    • /
    • 2004.11a
    • /
    • pp.154-156
    • /
    • 2004
  • 고도의 정보가 집약되고 응용되기 시작하면서 정보를 표현하고자 하는 방법에 대한 연구는 더욱 절실히 요구되고 있다. 자연색에 가까운 고품질의 색상의 화면을 제공하기 위해 디스플레이의 무게와 크기, 전력소모 등의 많은 부분에 대해 연구가 진행되고 있다. 본 논문에서는 이러한 모든 기능을 충족시켜주는 차세대 디스플레이인 OLED(Organic Light-Emitting Diode)에 대한 구동 드라이브를 디지털 회로에 응용하고자 정확한 동작에 필요한 방법에 대해 소개하고 개선점에 대한 연구를 하였다.

  • PDF

To improve the performance of BER using the 2-step interleaving for Visible Light Communication with LEDs (LED를 이용한 가시광 통신 시스템에서 2-step 인터리빙을 통한 BER 성능 향상)

  • Lee, Jonghyun;Seo, Hyoduck;Han, Doohee;Lee, Kyesan;Lee, Kyujin
    • Journal of Satellite, Information and Communications
    • /
    • v.10 no.2
    • /
    • pp.46-53
    • /
    • 2015
  • Visible Light Communication (VLC) is effective way to realize the light device and communication device using a Light Emitting Diode (LED) simultaneously. VLC has high security for Field Of View (FOV) communication area, also which is possible to transmit the high data rate using visible light. In VLC, transmitting the divided data by the RGB channels is higher data rate than transmitting the same data by RGB channels. However, it occurred the burst error by scattering and reflection of visible light which is impossible to restore that. To solve the problem, we proposed the 2-step interleaving scheme that high data rate and improve the performance of BER in VLC. The proposed system implements cyclic interleaving and convolutional interleaving that is able to be standardized the performance of RGB channels and improve the performance of BER using error correction.

A Study on a Visible Light Communication using LED in Under-water Environment (LED조명을 이용한 수중환경에서의 VLC 연구)

  • Jung, Hui-Sok;Yang, Yeon-Mo;Huh, Kyung-Moo
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.48 no.5
    • /
    • pp.1-6
    • /
    • 2011
  • LED(Light Emitting Diode) components have advantages of longer lifetime, lower power consumption and easy-to-control, compare to normal lamp and fluorescent light, according to the development of recent technologies. Thus, lots of illuminations which utilize LED components could be used. Recently, Visible Light Communication(VLC) which is a part of communication technologies, utilizing high speed response characteristic of LED components, started receiving public attention. In case of VLC, there is no need of frequency allocation due to no use of radio, but also no interference exists during data transmission, much different in ISM((Industrial Scientific Medical band). This is the reason why a lot of research results about VLC are becoming issued. In this paper, a survey of feasibility for using VLC utilizing an original LED illumination for underwater applications has been done and a primitive possibility of its application has been examined.