• Title/Summary/Keyword: Light vehicle

Search Result 775, Processing Time 0.028 seconds

A Study on the way to improve the rear van's durability of Korean Light Tactical Vehicle (한국형 전술차량 후방밴 강성·강도 보강을 통한 내구성 향상에 관한 연구)

  • Park, Jinwon;Kim, Dooho;Song, Buguen;Kim, Seonjin;Yun, Sangjin
    • Journal of Korean Society for Quality Management
    • /
    • v.46 no.2
    • /
    • pp.269-282
    • /
    • 2018
  • Purpose: The purpose of this study was to improve the FRP Van's durability by analyzing the problematic parameters, redesigning the rear van, and verifying the design drafts using the CAE analysis & Rig test. Methods: The collected data through the government quality inspection and field spot check were thoroughly analyzed through the characteristics diagram and the improvement suggestions were verified by performing CAE analysis, like the dynamic stiffness, Torsional stiffness, open/close condition's strength, Full car durability and Carrying out the actual test. Results: The results of this study are as follows; The output of CAE analysis shows that improvement suggestions have considerable effects on the reinforcement of FRP structure, and the actual torsion and open/close condition durability test prove that rear van may have durable life which is equivalent to vehicle life cycle. Conclusion: The structural weakness of KLTV's FRP rear van was overcome by applying the stiffener in rear van and changing the bonding method of each FRP pieces. That suggestions were proved using CAE analysis and Rig test.

The Composition of Non-methane Hydrocarbons Determined from a Tunnel of Seoul During Winter 2000

  • Kwangsam Na;Kim, Yong-Pyo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.16 no.E2
    • /
    • pp.69-77
    • /
    • 2000
  • Measurements of non-methane hydrocarbons (NMHC) were carried out in the Sangdo tunnel and on a nearby roadway in Seoul during the during the periods of heavy(low speed with ∼20km h(sup)-1) and light(high speed with ∼60kmh(sup)-1) traffic in February 2000. In the tunnel, the total NMHC levels during the heavy traffic period were higher than those during the light traffic period by a factor of 2. This was due to the increase of emissions at the low vehicle speed period and the higher dilution effect derived from faster flow of tunnel air at the high vehicle speed period. The average total NMHC concentration in the tunnel was 1.7 times as high as that on the roadway. The species with the highest concentration in the tunnel was ethylene(50.1 ppb), followed by n-butane(34.1 ppb) and propane (21.9 ppb). The concentration ranking in the tunnel was generally in good agreement with that on the roadway, suggesting that the NMHC compositions in the tunnel and on the nearby roadway were primarily determined by vehicle exhausts. However, the NMHC compositions in the Sangdo tunnel do not agree well with other foreign study results, reflecting that the characteristics of vehicle exhausts of Seoul is different from those of other cities. The most prominent difference between this study and other studies is the high mass fractions of butanes and propane. It was be attributed to the wide use of butane-fueled vehicles.

  • PDF

Greenhouse Gas and Pollutant Emission from Light-Duty Vehicles Regarding the Relative Positive Acceleration (주행패턴의 상대 가속도에 따른 중소형 자동차의 온실가스 및 대기오염물질 배출 특성)

  • Lee, Tae-Woo;Keel, Ji-Hoon;Park, Kyung-Kyun;Park, Jun-Hong;Park, Yong-Hee;Hong, Ji-Hyung;Lee, Dae-Yup
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.4
    • /
    • pp.31-39
    • /
    • 2010
  • Although driving patterns strongly influence greenhouse gas and air pollutant emission rate from light duty vehicles, emission measurements have been mainly based on chassis dynamometer testing with one standard driving pattern. And there has been limited work on quantifying the independent effect of driving parameters on emission rate because of multidimensional nature of real-world driving pattern. The objective of this study is to obtain the quantitative effect of relative positive acceleration (RPA) on vehicle emission rate. RPA has been used to define the occurrence of acceleration demanding large amounts of power in certain driving distance and shown to be a significant affecting parameter for real-world emission rate. 40 driving patterns have been developed with fixed driving parameters to investigate independent effect of RPA. For the same values of average vehicle speed and power, the trend in carbon dioxide emission rate and fuel consumption with respect to RPA is very clear. Emission rate of nitrogen oxide and particulate matter also increase with respect to RPA, but the trend is less clear. Carbon dioxide emission from diesel vehicle appear to be more affected by high accelerations compared to that from gasoline vehicle because of high intake air restriction during acceleration caused by turbocharger and intercooler. The results have implications for the possible reduction of environmental effects through better traffic planning and management, driver education and car design.

Technical Development Trend and Analysis of Futuristic Personal Air Vehicle (미래형 개인용 항공기 기술개발 동향 및 분석)

  • Yi, Tae-Hyeong;Kim, Keun-Taek;Ahn, Seok-Min;Lee, Dae-Sung
    • Current Industrial and Technological Trends in Aerospace
    • /
    • v.9 no.1
    • /
    • pp.64-76
    • /
    • 2011
  • The current development trend and status of a personal air vehicle, known as the novel concept of a transportation that combines a personal car with a light general aviation aircraft, is summarized to investigate its feasibility as a future transportation. In the paper, the development programs of a personal air vehicle such as AGATE, PAVE, SATS and NGATS are first summarized, and then the design, technical development and testing activities of Terrafugia's Transition and Moller International's M400 Skycar, which will be commercialized in a short time, are reviewed. Based on the assessment of technical issues with those vehicles, the key technologies for the future development of the personal air vehicle are suggested with two basic requirements of safety and mobility.

  • PDF

Method for Constructing a Railway by using a Guide-way for a Rubber-wheeled automated Transit System (안내궤도를 이용한 고무차륜 경량전철 AGT 궤도부설공법)

  • Kang, Nam-Hun;Lee, An-Ho;Lee, Il-Wha;Kim, Chang-Hwan
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.1793-1798
    • /
    • 2011
  • The railway structure for a rubber-wheeled automated guide-way transit system consists of a driveway and a guide-way. The most important factor of this system is the driveway and the guide-way aligned with each other, especially for curves and inclines section. The conventional construction method caused many problems such as discordancy by constructing the driveway before constructing the guide-way. Therefore, in this paper we introduce a new method of constructing a railway for a rubber-wheeled light rail vehicle; the new method of constructing the guide-way beforehand as a preceding process. The new method for AGT railway system can simplify the construction process and thus the construction costs may be reduced. It should also improve the driving performance and the comfortability in operating of a light rail vehicle.

  • PDF

The Study on the Exterior Design Decision Process of the Maneuver Weapon System Development (기동무기체계 개발에서 외형 디자인 결정 프로세스에 관한 연구)

  • Youn, Byungjo;Lee, Ho
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.13 no.2
    • /
    • pp.1-8
    • /
    • 2017
  • The Core in Weapon system R&D is to realize the user required capabilities in limited schedule and cost. Therefore, the design of weapon system focuses to functional design for realization of requirement capabilities. However, the weapon system should not only basically bring the confidence to friendly forces bring fear to enemy forces to maximize the operational effectiveness of weapon systems and we consider the exterior design as the important factor to compete with foreign systems in international defense market besides capabilities and cost. For that reason, we made study case about the visual design decision process applied to the LVT(light tactical vehicle) project which was recent successful deployment among the many R&D projects of auto industry. Based on this case, this study suggests the necessity of the exterior design decision process the maneuver weapon system is developed.

A Study on the Characteristics and Application of E-EGR Valve for Light Duty Automotive Diesel Engine (차량용 소형디젤엔진의 배기 재순환용 전자식 밸브 특성과 적용에 관한 연구)

  • 송창훈;정용일;차경옥
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.26 no.4
    • /
    • pp.425-431
    • /
    • 2002
  • In this study the characteristics of E-EGR valve developed by electrical method were analysed and the feasibility of application to vehicles was evaluated. The engine of smart car applied for diesel passenger car of small-displacement size developed by common vehicle was used for this experiment. It was installed a 3-cylinder, $0.8\ell$, turbo-charged light duty diesel engine with an electronic EGR valve. After the analysis and comparison of E-EGR valve performance by test bench, the estimation of vehicle application was executed through the EGR map and CVS-75 test result measured on the chassis dynamometer.

An Experimental Study on the Development & Application of E-EGR Valve for Light Duty Diesel Vehicle (소형디젤엔진용 E-EGR 밸브의 개발 및 차량적용에 관한 실험적 연구)

  • 송창훈;정용일;차경옥
    • Journal of Energy Engineering
    • /
    • v.11 no.3
    • /
    • pp.203-209
    • /
    • 2002
  • In this study the characteristics of E-EGR valve developed by Unick were analyzed and the feasibility of application to vehicles were evaluated. Smart car (3$\ell$/100 km) and engine which is small-displacement size, 0.8-liter, of diesel passenger car developed from Mercedes-Benz were used for this experiment. It was installed a 3-cylinder turbo-charged light duty diesel engine with an electronic EGR valve. After the analysis and comparison of E-EGR valve performance under test benches, the estimation of vehicle application was executed through the EGR map and CVS-75 test result measured on the chassis dynamometer.

Safety evaluation of rubber-tired AGT light rail vehicle-running track (고무차륜 AGT 경량전철 차량-주행궤도 안전성 평가)

  • Lim T.K.;Kim Y.S.;Lee A.H.;Kim J.M.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1644-1647
    • /
    • 2005
  • This study was aimed at evaluating the structural safety for rubber tired AGT system. Based on these, AGT system which was developed for first time in domestic is need to verify structural safety. So we measured the characteristics of guide-rail, switch rail, side wall in the constructed test track for rubber tired AGT system. Finally, all results of test showed that structural safety of the rubber tired AGT system.

  • PDF

Emission Reduction using Unburned Exhaust Gas Ignition (미연배기가스 점화 기술을 이용한 배기저감)

  • 김득상;강봉균;양창석;조용석
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.3
    • /
    • pp.39-47
    • /
    • 2003
  • UEGI (Unburned Exhaust Gas Ignition) is an alternative method for fast light-off of a catalyst. It ignites the unburned exhaust mixture using two glow plugs installed in the upstream of the close-coupled catalysts. In addition, a hydrocarbon adsorber was applied to the UEGI, for more effective reduction of HC emission. Engine bench tests show that the CCC reaches the light-off temperature laster than the baseline exhaust system and HC and CO emissions are reduced significantly during the cold start. From the vehicle test, it was observed that a few amount of HC emission was reduced even the catalysts were aged. It is expected to develop a solution kit applicable to a new vehicle or used one, to meet the emission regulation