• 제목/요약/키워드: Light tube

검색결과 356건 처리시간 0.023초

튜브 트레인 공력특성 해석 (Aerodynamic Characteristics of a Tube Train)

  • 김태경;김규홍;권혁빈
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2010년도 춘계학술대회 논문집
    • /
    • pp.139-150
    • /
    • 2010
  • 최근 한국에서는 세계적인 녹색기술을 맞아 향후 차세대 교통 시스템으로서 튜브 트레인 시스템의 본격적인 연구가 진행되고 있다. 한국 철도기술연구원(KRRI, Korea Railroad Research Institute)에서 튜브 트레인 시스템의 건설을 위한 목적으로 연구가 진행되고 있다. 본 논문에서는 기초연구의 일환으로 축대칭하며 긴 형상의 수송체가 가지는 다양한 튜브(터널) 내부의 압력, 막힘비율, 운행속도를 파라미터로 선정하여 전산해석을 수행하였다. 세부사항으로는 동일 형상의 운송체가 동일 운행속도를 가지고 일반적 압력의 개활지(오픈 시스템, 개활지 운행)를 운행할 때와, 다양한 환경(튜브 내 압력, 막힘비율, 운행속도)의 튜브 내부를 운행할 때에 대하여 튜브 트레인의 공력특성 연구를 수행하였다. 이를 통하여 다양한 운행속도-막힘비율 별로 개활지와 동일 에너지 효율 나오는 튜브 내 압력(P-D 관계)을 계산하였고, 막힘비율 증가에 따른 튜브 내 감압 정도(P-${\beta}$ 관계), 다양한 막힘비율-튜브 내 압력 별로 운행속도에 따른 전체 항력 양상(D-V 관계)을 보여 주었다. 그리고 개활지 운행시와 튜브 내부 운행시의 에너지 효율(주행저항)을 비교하였고, 튜브 내부 운행 시 트레인이 갖는 효율과 관계되는 충격파 발생의 임계속도(critical V-B 관계) 및 한계속도(V-P 관계)를 얻을 수 있었다. 이러한 연구의 결과는 튜브 시스템 설계 및 건설에 꼭 필요한 것이며 가이드라인을 제시했다.

  • PDF

High-temperature oxidation behaviors of ZrSi2 and its coating on the surface of Zircaloy-4 tube by laser 3D printing

  • Kim, Jae Joon;Kim, Hyun Gil;Ryu, Ho Jin
    • Nuclear Engineering and Technology
    • /
    • 제52권9호
    • /
    • pp.2054-2063
    • /
    • 2020
  • The high-temperature oxidation behavior of ZrSi2 used as a coating material for nuclear fuel cladding was investigated for developing accident-tolerant fuel cladding of light water reactors. Bulk ZrSi2 samples were prepared by spark plasma sintering. In situ X-ray diffraction was conducted in air at 900, 1000, and 1100 ℃ for 20 h. The microstructures of the samples before and after oxidation were examined by scanning electron microscopy and transmission electron microscopy. The results showed that the oxide layer of zirconium silicide exhibited a layer-by-layer structure of crystalline ZrO2 and amorphous SiO2, and the high-temperature oxidation resistance was superior to that of Zircaloy-4 owing to the SiO2 layer formed. ZrSi2 was coated on the Zircaloy-4 tube surface using laser 3D printing, and the coated tube was oxidized for 2000 s at 1200 ℃ under a vapor/argon mixture atmosphere. The outer surface of the coated tube was hardly oxidized (10-30 ㎛), while the inner surface of the uncoated tube was significantly oxidized to approximately 300 ㎛.

Catalytic growth of single wall carbon nanotubes by laser vaporization and its purification and The carbon nanotube growth on the Si substrate by CVD method

  • Lee, Sung won;Jung in Sohn;Lee, Seonghoon
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2000년도 제18회 학술발표회 논문개요집
    • /
    • pp.213-213
    • /
    • 2000
  • Direct laser vaporization of transition-metal(Co, Ni)/graphite composite pellet produced single wall carbon naotubes(SWNT) in the condensing vapor in a heated flow cylinder-type tube furnace, Transition metal/graphite composite pellet target was made by mixing graphite, Co, and Ni in 98:1:1 atomic weight ratios, pressing the mixed powder, and curing it. The target was placed in a tube furnace maintained at 1200$^{\circ}C$ and Ar inert collision gas continuously flowed into the tube. The 2nd harmonic, 532nm wavelength light from Nd-YAG laser was used to vaporize the tube. The carbon nanotubes produced by the laser vaporization were accumulated on quartz tube wall. The raw carbon nanotube materials were purified with surfactants(Triton X-100) in a ultrasonicator. These carbon nanotubes were analyzed using SEM, XRD, and Raman spectroscopic method. The carbon nanotube growth on the Ni-patterned Si substrate was investigated by the CVD process. Transition-metal, Ni and CH4 gas were used as a catalyst and a reactant gas, respectively. The structure and the phonon frequencies of the carbon nanotubes formed on the patterned Si substrate were measured by SEM and Raman spectrometer.

  • PDF

작은 수직관을 흐르는 기-액 슬러그 유동의 유동특성 (Flow Characteristics of a Gas-Liquid Slug Flow in Small Vertical Tubes)

  • 계석현;김동선
    • 설비공학논문집
    • /
    • 제25권5호
    • /
    • pp.246-254
    • /
    • 2013
  • Some characteristics of nitrogen-water slug flow were optically measured, in vertical acrylic tubes of 2, 5 and 8 mm diameter. Bubble velocity, bubble and unit cell lengths were measured, by analyzing the light intensity signals from two sets of dot laser-infrared sensor modules mounted along the transparent tubes. Optical images of the bubbles were also taken and analyzed, to measure bubble shapes and liquid film thickness. It was found that the measured bubble velocities were in good agreement with the empirical models in the literature, except for those measured under high superficial velocity condition in the 2 mm tube. Bubble length was found to be the longest in the 2 mm tube, being 4 to 5 times those of the other tubes. Liquid film was found to have developed early in the 2 mm tube, which made the blunt shape of the bubble head. Liquid film thickness in the 8 mm tube was measured at almost twice those of the other tubes.

Experimental study on hollow GFRP-confined reinforced concrete columns under eccentric loading

  • B.L. Chen;H.Y. Gao;L.G. Wang
    • Steel and Composite Structures
    • /
    • 제52권4호
    • /
    • pp.451-460
    • /
    • 2024
  • Hollow reinforced concrete columns confined with GFRP tubes (GRCH) are composite members composed of the outer GFRP tube, the PVC or other plastic tube as the inner tube, and the reinforced concrete between two tubes. Because of their high ductility, light weight, corrosion resistance and convenient construction, many researchers pay attention to the composite members. However, there are few studies on GRCH members under eccentric compression compared with those under axial compression. Eight hollow columns were tested under eccentric compression, including one axial compression column and seven eccentric compression columns. The failure modes and force mechanisms of GRCH members were analyzed, considering the varying in hollow ratio, reinforcement ratio and eccentricity. The test results showed that configuring steel bars can greatly increase the bearing capacity and ductility of the members. Each component (GFRP tube, concrete, steel bar) had good deformation coordination and the strength of each material could be fully utilized. But for specimens with larger eccentricity ratio (er=0.4) and larger hollow ratio (χ=0.55), the restraining effect of GFRP tube on concrete was significantly decreased.

색소레이저의 국산화 개발에 관한 연구 (Development of Homemade Dye Laser)

  • 오철한;박덕규;이성만
    • 대한전기학회논문지
    • /
    • 제34권2호
    • /
    • pp.56-62
    • /
    • 1985
  • It is desirable to establish a fundamental basis of dye laser technology in korea. Except the special wavelength mirrors, all parts of the dye laser were assembled using domestically available materials and the interior technology. The characteristics of pumping light of Ar discharge tube, fluorescence light of Rhodamine 6G and output pulses of the homemade dye laser were investigated by means of CRO and spectroscopic analysis.

  • PDF

경량화 알루미늄-GFRP 혼성 사각관 보의 굽힘성능 및 붕괴 메커니즘 (Bending Performances and Collapse Mechanisms of Light-weight Aluminum-GERP Hybrid Square Tube Beams)

  • 이성혁;김형진;장영욱;최낙삼
    • Composites Research
    • /
    • 제20권3호
    • /
    • pp.8-16
    • /
    • 2007
  • 자동차 충돌이나 전복사고에 있어서 부재들의 변형은 축방향 압축붕괴와 함께 굽힘붕괴가 혼합된 변형양상을 보여주고 있으며, 자동차에 사용되는 대부분의 박벽관 부재는 굽힘붕괴가 주된 붕괴형태로 나타나고 있다. 하지만 혼성 사각관의 굽힘붕괴에 대한 연구는 축방향 붕괴의 연구에 비해 많이 부족한 현실이다. 본 논문에서는 알루미늄-복합재료 혼성 사각관의 굽힘 붕괴 거동 및 에너지 흡수 특성을 실험적 방법으로 연구하여 경량화 구조부재로서의 적용가능성을 조사하였다. 접착필름 살입형 경화법으로 제작된 알루미늄-복합재료 혼성 사각관 보에 대해 복합 재료 층의 적층두께와 적층 각에 따른 굽힘 성능을 평가하였다. 본 혼성 사각관 보는 복합재료만으로 구성된 사각관 보에서 발생할 수 있는 불안정한 붕괴모드를 안정적인 붕괴로 전환시키면서, 단순 알루미늄 사각관에 비해 에너지 흡수 능력이 향상되었고, 특히 $[0^{\circ}/90^{\circ}]s$를 적층한 혼성 사각관의 경우 벽두께 1mm인 알루미늄 사각관 시험편과 비교하여 흡수에너지가 1.78배 증가하였고 단위무게당 흡수에너지는 1.29배로 증가함을 보였다.

관재 액압성형에 의한 성형성 및 성형품 특성에 관한 실험적 연구 (Experimental Studies on Formability and Characteristics of Tube Hydroforming)

  • 조완제;손현성;박춘달;김영석
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2001년도 추계학술대회 논문집
    • /
    • pp.54-57
    • /
    • 2001
  • Hydroforming is core production techniques for the super light weight and high safety of the vehicle body. In order to establish and understand hydroforming, the tube hydroforming simulator which could control an axial compression and high internal pressure with computer operation was developed in tube bulging. This paper presents experimental investigation for process parameters, such as Internal pressure and axial compression. In addition, the mechanical properties, such as strain hardening and energy absorption ability of hydroformed part, is discussed.

  • PDF

인발성형 GFRP 부재의 특성 변화와 앵글 및 튜브 부재의 좌굴 거동 분석 (Characteristics of Pultruded GFRP and Buckling Behavior of Angle and Tubular Member)

  • 이성우;신경재;김현정
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2000년도 춘계학술발표대회 논문집
    • /
    • pp.15-19
    • /
    • 2000
  • Recently Western countries are now beginning to use ACM (Advanced Composites Material), in the construction industry Compared with existing construction materials, ACM possesses many advantages such as light-weight, high-strength, corrosion resistant property. Among other fabrication process of ACM, pultrusion is one of the promising one for civil infrastructure application. In this paper, the structural characteristics of pultruded GFRP strip and structural members of angle and tube type were studied. For the strip, parametric studies of pultrusion process has been carried out. Considered parameters were volume fraction, temperature, pulling speed and fiber orientations. For the pultruded angle and tube, compression test and buckling analysis has been carried out. The results were compared with calculated values using coded formulae

  • PDF

하이드로포밍에 의한 튜브 확관에 대한 해석 (Analysis of Tube Expansion by Hydroforming)

  • 이재원;박종진
    • 대한기계학회논문집A
    • /
    • 제26권11호
    • /
    • pp.2253-2261
    • /
    • 2002
  • Recently the hydroforming technology has drawn a lot of attention because of its capability to produce high quality and light weight parts. In the present study, the tube expansion - one of the simplest hydroforming processes, has been investigated in order to understand fundamental phenomena such as deformation characteristics and effect of process parameters. As a result, the most important process parameters, which determine the state of stress at the expanded zone, were found to be pressure and die displacement. If the stress becomes equi-axial tension at the zone, necking occurs at some distance from the weld line and develops into a crack along the axial direction. Some aspects of mechanical property measurements as well as distributions of hardness and microstructure are also discussed in this paper.