• Title/Summary/Keyword: Light scattering method

Search Result 329, Processing Time 0.023 seconds

Determination of Sizes of Nano-Particles by Specific Turbidimetry (비혼탁도 법을 이용한 나노 콜로이드 입자의 크기 결정)

  • Lim, Kyung-Hee
    • Journal of the Korean Applied Science and Technology
    • /
    • v.25 no.1
    • /
    • pp.107-114
    • /
    • 2008
  • In this article a reliable and rapid method based on specific turbidimetry is proposed for the determination of sizes of nanoparticles. Conventionally in specific turbidimetry specific turbidities for a colloidal dispersion are measured as a function of light wavelength, and compared to theoretical values calculated from Mie scattering theory for presumed particle sizes. In contrast specific turbidity at a fixed wavelength is measured in the proposed method, and particle sizes are determined from the prepared calibration curve. The calibration curve is a plot of specific turbidity vs particle size and in this case the specific turbidities are measured for a couple of samples of known sizes.

Real-time High Resolution PM Monitoring in Seoul (서울지역 미세먼지의 실시간 고해상도 모니터링 방안)

  • Kang, Doo Soo;Bong, Choon Keun;Kim, Dae Seong
    • Particle and aerosol research
    • /
    • v.15 no.2
    • /
    • pp.67-78
    • /
    • 2019
  • Since existing measurement sites are required to construct a high-cost PM measuring device and a measuring site of a large area, there is a limit to the construction of a high-resolution measurement network. Therefore, it is necessary to develop a low-cost, high-performance PM measuring device (as an alternative technology) that can increase the resolution of PM measurement, and it is necessary to establish a base to provide real-time PM information for whole people. Therefore, in this study, the alternative technique (light scattering method) for achieving the above object was examined, performance evaluation was carried out, and it was verified that the light scattering method was usable. Various PM measurement results were compared and analyzed to find PM monitoring points and resolutions we would like to propose.

Real-Time Simulation of Single and Multiple Scattering of Light (빛의 단일 산란과 다중 산란의 실시간 시뮬레이션 기법)

  • Ki, Hyun-Woo;Lyu, Ji-Hye;Oh, Kyoung-Su
    • Journal of Korea Game Society
    • /
    • v.7 no.2
    • /
    • pp.21-32
    • /
    • 2007
  • It is significant to simulate scattering of light within media for realistic image synthesis; however, this requires costly computation. This paper introduces a practical image-space approximation technique for interactive subsurface scattering. We use a general two-pass approach, which creates transmitted irradiance samples onto shadow maps and computes illumination using the shadow maps. We estimate single scattering efficiently using a method similar to common shadow mapping with adaptive deterministic sampling. A hierarchical technique is applied to evaluate multiple scattering, based on a diffusion theory. We further accelerate rendering speed by tabulating complex functions and utilizing level of detail. We demonstrate that our technique produces high-quality images of animated scenes with blurred shadow at hundreds frames per second on graphics hardware. It can be integrated into existing interactive systems easily.

  • PDF

Analysis of cross-talk effects in volume holographic interconnections using perturbative integral expansion method

  • Jin, Sang-Kyu
    • Journal of the Optical Society of Korea
    • /
    • v.2 no.2
    • /
    • pp.58-63
    • /
    • 1998
  • Cross-talk effects in high-density volume holographic interconnections are investigated using perturbative iteration method of the integral form of Maxwell's wave equation. In this method, the paraxial approximation and negligence of backward scattering introduced in conventional coupled mode theory is not assumed. Interaction geometries consisting of non-coplanar light waves and multiple index gratings are studied. Arbitrary light polarization is considered. Systematic analysis of cross-talk effects due to multiple index gratings is performed in increasing level of diffraction orders corresponding to successive iterations. Some numerical examples are given for first and third order diffraction.

Multiple light diffraction theory in volume gratings using perturbative integral expansion method

  • Jin, Sang-Kyu
    • Journal of the Optical Society of Korea
    • /
    • v.1 no.2
    • /
    • pp.67-73
    • /
    • 1997
  • Light wave diffraction from multiple superposed volume gratings is inestigated using a perturbative iteration method of the integral equation of Maxwell's wave equation. The host material and index gratings are anisotropic and non-coplanar multiple volume gratings are considered. In this method, the paraxial approximation and lack of backward scattering in conventional coupled mode theory are not assumed. Systematic analysis of anisotropic wave diffraction due to multiple noncoplanar volume index gratings is performed in increasing level of diffraction orders corresponding to successive iterations.

An Effective Cloth Rendering using Internal Scatter Function (내부 산란함수를 이용한 효과적인 옷감 렌더링)

  • Park, Sun-Yong;Chun, Young-Jae;Oh, Kyoung-Su
    • Journal of Korea Game Society
    • /
    • v.9 no.3
    • /
    • pp.97-105
    • /
    • 2009
  • In this paper, we propose a new rendering scheme of cloth by measuring light-scattering pattern inside the cloth and reproducing using the pattern. To date, the BTF(Bidirectional Texture Function) has been one of the most appropriate method to realistically reconstruct cloth surface. However, the BTF has a couple of defects that it ultimately requires an infinite amount of data and all light effects should be used all together. We noted that internal scattering has a decisive contribution to the reality of cloth. Following this observation, we take an image of a ray of light scattering inside cloth for every position of the cloth sample and determine each pixel value by adding up all light influences arriving from its vicinity. Our method we propose in this paper provides a clue to more realistically represent cloth-like materials, which is one of the most challenging materials to express, by enabling each ray to be controlled individually.

  • PDF

Disk-averaged Spectra Simulation of Earth-like Exoplanets with Ray-tracing Method

  • Ryu, Dong-Ok;Kim, Sug-Whan
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.1
    • /
    • pp.76.2-76.2
    • /
    • 2012
  • The understanding spectral characterization of possible earth-like extra solar planets has generated wide interested in astronomy and space science. The technical central issue in observation of exoplanet is deconvolution of the temporally and disk-averaged spectra of the exoplanets. The earth model based on atmospheric radiative transfer method has been studied in recent years for solutions of characterization of earthlike exoplanet. In this study, we report on the current progress of the new method of 3D earth model as a habitable exoplanet. The computational model has 3 components 1) the sun model, 2) an integrated earth BRDF (Bi-directional Reflectance Distribution Function) model (Atmosphere, Land and Ocean) and 3) instrument model combined in ray tracing computation. The ray characteristics such as radiative power and direction are altered as they experience reflection, refraction, transmission, absorption and scattering from encountering with each all of optical surfaces. The Land BRDF characteristics are defined by the semi-empirical "parametric-kernel-method" from POLDER missions from CNES. The ocean BRDF is defined for sea-ice cap structure and for the sea water optical model, considering sun-glint scattering. The input cloud-free atmosphere model consists of 1 layers with vertical profiles of absorption and aerosol scattering combined Rayleigh scattering and its input characteristics using the NEWS product in NASA data and spectral SMARTS from NREL and 6SV from Vermote E. The trial simulation runs result in phase dependent disk-averaged spectra and light-curves of a virtual exoplanet using 3D earth model.

  • PDF

Fabrication of $TiO_2$ Electrode Containing Scattering Particles in Dye-Sensitized Solar Cells (산란 입자를 포함하는 염료감응 태양전지용 $TiO_2$ 전극 제조)

  • Lee, Jin-Hyoung;Lee, Tae-Kun;Kim, Cheol-Jin
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.18 no.2
    • /
    • pp.57-62
    • /
    • 2011
  • The energy conversion efficiency of DSSCs (Dye-Sensitized Solar Cells) is dependent on the powder size, the structure, and the morphology of $TiO_2$ electrode. The higher efficiency is obtained with high surface area of the nanoanatase-$TiO_2$ powder adsorbed onto a lot more of the dye. Also, the enhancement of light scattering increases the efficiency with high adsorption of the dye. Powder size, crystalline phase, and shape of $TiO_2$ obtained by hydrothermal method have 15-20 nm, anatase and round. $TiO_2$ electrode has fabricated with the mixture of scattering $TiO_2$ particle with 0.4 ${\mu}m$ in nano-sized powder. Conversion efficiency of series of DSSCs was measured with volume fraction of scattering particle. Photovoltaic characteristics of DSSCs with 10% scattering particles are 3.51 mA for Jsc (short circuit current), 0.79 V for Voc(open circuit potential), filling factor 0.619 and 6.86% for efficiency. Jsc was improved by 11% and enhancement of efficiency by 0.77% compared with that of no scattering particles. The confinement of inserted light by light scattering particles has more increase of the injection of exiton(electron-hole pair) and decrease of moving path in electron. Efficiencies of DSSCs with more than 10% for scattering particles have reduced with increasing the pore in the $TiO_2$ electrode.

Visible Light-Driven $CuInS_2-TiO_2$ Nanotube Composite Photoelectrodes with Heterojunction Structureusing Pulsed-Electrochemical Deposition Process (Pulse 전위를 적용한 전기화학적 증착 공정으로 제조된 가시광 활성 이종접합 $CuInS_2-TiO_2$ Nanotube 화합물 광전극)

  • Yun, Jung-Ho;Amal, Rose;Park, Young-Koo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.30 no.1
    • /
    • pp.49-56
    • /
    • 2013
  • Excellent electron transport properties with enhanced light scattering ability for light harvesting have made well-ordered one dimensional $TiO_2$ nanotube(TNT) arrays an alternative candidate over $TiO_2$ nanoparticles in the area of solar energy conversion applications. The principal drawback of TNT arrays being activated only by UV light has been addressed by coupling the TNT with secondary materials which are visible light-triggered. As well as extending the absorption region of sunlight, the introduction of these foreign components is also found to influence the charge separation and electron lifetime of TNT. In this study, a novel method to fabricate the TNT-based composite photoelectrodes employing visible responsive $CuInS_2$ (CIS) nanoparticles is presented. The developed method is a square wave pulse-assisted electrochemical deposition approach to wrap the inner and outer walls of a TNT array with CIS nanoparticles. Instead of coating as a dense compact layer of CIS by a conventional non-pulsed-electrochemical deposition method, the nanoparticles pack relatively loosely to form a rough surface which increases the surface area of the composite and results in a higher degree of light scattering within the tubular channels and hence a greater chance of absorption. The excellence coverage of CIS on the tubular $TiO_2$ allows the construction of an effective heterojunction that exhibits enhanced photoelectrochemical performance.

Early Hardening Behavior of Natural Hydraulic Lime Paste by Multiple Light Scattering Analysis (Multiple Light Scattering 분석법을 이용한 천연수경성석회의 초기경화 거동)

  • Moon, Ki-Yeon;Cho, Kye-Hong;Cho, Jin-Sang;Hong, Chang-Woo
    • Resources Recycling
    • /
    • v.26 no.1
    • /
    • pp.43-50
    • /
    • 2017
  • In the present study, the multiple light scattering method was used for analysis of early hardening behavior of natural hydraulic lime (NHL) containing inorganic additives. In order to improve the properties of self-manufactured NHL, blast furnace slag and three types of gypsum were mixed with mixing ratio, and a water/solid ratio of fresh NHL paste was fixed 0.6. The fresh pastes in flat-bottomed cylindrical glass tubes were placed in the instrument. The backscattering flux (BS) of light from fresh pastes was then periodically measured at 10 minutes intervals the entire length of the sample (55mm) at $23^{\circ}C$ for 24 hours. The rate of increase of BS, slope of a linear equation to the mean value of BS (%) as a function of hydration time, was increased from 0.02 to 0.38 BS %/hour due to addition of blast furnace slag and gypsum. In the case of addition of hemi-hydrate, BS (%) and rate of increase in BS were highest.