• Title/Summary/Keyword: Light pipe system

Search Result 87, Processing Time 0.027 seconds

Comparative study on the performance of butt fusion-welding processes for nuclear safety class large-diameter thick-walled PE pipes

  • Zhenchao Wang;Bin Wang;Aimin Xiang;Di Jiao;Fa Yu;Qiuju Zhang;Xiaoying Zhao
    • Nuclear Engineering and Technology
    • /
    • v.56 no.10
    • /
    • pp.4184-4194
    • /
    • 2024
  • New technologies in polymer synthesis and pipe extrusion equipment have led to the commercialization of high-performance, large-diameter, thick-wall high density polyethylene (HDPE) pipes. They have been used in the field of seawater transport and cooling to replace metal pipes, due to their advantages of high corrosion resistance and extensibility. Connection of HDPE pipe is important as it determines the safety of the entire piping system. Butt fusion welding is commonly used for HDPE pipe connection but may cause the formation of weak points in the welded joints, interfering the reliability of the pipeline system in the application of nuclear power plants. At present, there is a lack of research on evaluating the performance of welded joint for large-diameter thick-wall HDPE pipes made by butt fusion-welding. The purpose of this study is to investigate the influence of three different butt fusion-welding processes, i.e., single low pressure (SLP), single high pressure (SHP) and dual low pressure (DLP), by evaluating the performance of their welded joints, including characterizing tensile strength, extensibility, crystallinity and hardness. In specific, a thick-wall HDPE pipe with OD of 812.8 mm and wall thickness of 74 mm which is certified for nuclear safety class was used for study. Representative specimen from the outer, middle and inner part across the wall of the main pipe body and welded joints were taken for testing. Different test methods and specimens were designed to assess the feasibility of evaluating the welding performance from different welding process. The results showed that the mechanical properties of different locations of the welded joints were different, and the tensile strength and fracture energy of the middle part of the joint were lower than that of the inner and outer parts, which could be caused by the difference in the crystallinity and thickness of the melting zone influenced by welding processes, as can be seen from the analysis of DSC test and morphology observation. Hardness testing was conducted on the section of the welded joints, and it revealed that the micromechanical properties of the welded joints in the region of the heat-affected zone were enhanced significantly, which may be due to the annealing effect caused by welding process. In summary, The DLP process resulted in the best extensibility of the welded joints among three processes, suggesting that the joining pressure from welding process plays an important role in affecting the extensibility of the welded joints.

Water Injection/Urea SCR System Experimental Results for NOx Reduction on a Light Duty Diesel Engine

  • Nam, Jeong-Gil
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.3
    • /
    • pp.394-403
    • /
    • 2008
  • The effects of water injection (WI) and urea injection for NOx on a 4-cylinder Direct Injection (DI) diesel engine were investigated experimentally. For water injection, it was installed at the intake pipe and the water quantity was controlled at the intake manifold and Manifold Air Flow (MAF) temperatures while the urea injection was located at the exhaust pipe and the urea quantity was controlled by NOx quantity and MAF. The effects of WI system, urea-SCR system and the combined system were investigated with and without exhaust gas recirculation (EGR). Several experiments were performed to characterize the urea-SCR system, using engine operating points of varying raw NOx emissions. The results of the Stoichiometric Urea Flow (SUF) and NOx map were obtained. In addition, NOx results were illustrated according to the engine speed and load. It is concluded that the NOx reduction effects of the combined system without the EGR were better than those with the EGR-based engine.

Heat Recovery Characteristics of the Exhaust Heat Recovery System with Heat Pipe Unit Attached to the Hot Air Heater in the Greenhouse (히트파이프를 이용한 온풍난방기 배기열회수 시스템의 열회수 특성)

  • Kang, K. C.;Kim, Y. J.;Ryou, Y. S.;Baek, Y.;Rhee, K. J.
    • Journal of Biosystems Engineering
    • /
    • v.26 no.5
    • /
    • pp.441-448
    • /
    • 2001
  • Hot air heater with light oil combustion is used as the most common heater for greenhouse heating in the winter season. However, exhaust gas heat discharged to atmosphere through chimney reaches up to 10~20% of total heat capacity of the oil burred. In order to recover the heat of this exhaust gas and to use for greenhouse heating, the heat pipe type exhaust heat recovery system was manufactured and tested in this experiment. The system consisted of a heat exchanger made of heat pipes, ø15.88${\times}$600mm located in the rectangular box of 675(L)${\times}$425(W)${\times}$370(H)mm, an air suction fan and air ducts. The number of heat pipe was 60, calculated considering the heat exchange amount between exhaust gas and air and heat transfer capacity of a heat pipe. The working fluid of heat pipe was acetone because acetone is known for its excellent heat transfer capacity. The system was attached to the exhaust gas path. According to the performance test it could recover 53,809 to 74,613kJ/h depending on the inlet air temperature of 12 to -12˚at air flow rate of 1.100㎥/h. The temperature of the exhaust gas left the heat exchanger dropped to 100$^{\circ}C$ from 270$^{\circ}C$ after the heat exchange between the suction air and the exhaust gas.

  • PDF

Heat Radiation of LED Light using eu Plating Engineering Plastic Heat Sink (동도금 EP방열판에 의한 소형LED조명등 방열)

  • Cho, Young-Tae
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.1
    • /
    • pp.81-85
    • /
    • 2011
  • Recently, the electronic parts are to be thinner plate, smaller size, light weight material and CPU, HDD and DRAM in all the parts have been produced on the basis of the high speed and greater capacity. Also, conventional goods have replaced a LED (Light-Emitting Diode) in lighting products so; such industry devices need to have cooling. To maximize all the performance on the heat-radiated products, the area of heat-radiated parts is required to be cooled for keeping the life time extension and performance of product up. Existing cooling systems are using radiant heat plate of aluminum, brass by extrusion molding, heat pipe or hydro-cooling system for cooling. There is a limitation for bringing the light weight of product, cost reduction, molding of the cooling system. So it is proposed that an alternative way was made for bringing to the cooling system. EP (Engineering Plastic) of low-cost ABS (Acrylonitrile butadiene styrene Resin) and PC (Polycarbonate) was coated with brass and the coating made the radiated heat go up. The performance of radiant heat plate is the similar to the existing part. We have studied experimentally on the radiated heat plate for the light-weight, molding improvement and low-cost. From now on, we are going to develop the way to replace the exiting plate with exterior surface of product as a cooling system.

A New Way of Connecting Method Between Steel Pipe Pile and Concrete Footing (새로운 강관말뚝 머리 보강 공법 개발)

  • 박영호;김낙영;박종면;유성근;김영호
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.413-420
    • /
    • 2002
  • Recent experimental research results of connection method between steel pipe pile and concrete footing are provided based on various experimental observations. It gives a shedding light toward developing better and concrete connection method for steel pipe pile at the field application. In this study, the newly developed method is tested for compressive, pull put and combination load including moment with carefully designed monitoring system. The measured data show that new method have at least equivalent or better load resistant capacities compared with those of specified method in Korea Highway Corporation design code. It is also tried to define and investigate the load transfer mechanism for new method.

  • PDF

Efficient Lighting System for Amenity Light Environment (쾌적 빛 환경을 위한 효율적 조명 시스템)

  • Choi, Jong-Hyo;Oh, Myoung-Won;Kim, Byung-Seon
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.136-141
    • /
    • 2009
  • Considerable part of energy consumption is occurred by through buildings. Especially, Lighting energy consumption is most part of one in building. There is very various ways and systems for saving lighting energy. In method, It can be divided Passive Daylighting System and Active Daylighting System. Louver, Screen and use of window's character is representative ways of passive system. Reflection mirror, optical pipe and optical fiber is representative method of active system. Introducing day light on which place can't be introduced day light by typical method is important advantage of active system. Except introducing day lighting methods, efficient lighting management system can save lighting energy. It called lighting automation system. Representatively, Occupancy-related automation and Brightness-related automation system is that. According to occupancy and introducing daylighting level properly operate lamp's intensity of illumination that can save lots of energy. Though Introducing daylighting method, effective lighting system we can get proper intensity of illuminance level and energy saving.

  • PDF

HEAT PIPE TYPE EXHAUST HEAT RECOVERY SYSTEM FOR HOT AIR HEATER

  • Kang, G.C.;Kim, Y.J.;Ryou, Y.S.;Rhee, K.J.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11c
    • /
    • pp.654-661
    • /
    • 2000
  • Area of greenhouse increases rapidly up to 45,265ha by the year of 1998 in Korea. Hot air heater with light oil combustion is the most common heater for greenhouse heating in the winter season. However, exhaust gas heat discharged to atmosphere through chimney reaches up to 10~20% of total heat of the oil combusted in the furnace. In order to recapture the heat of this exhaust gas and to recycle for greenhouse heating, the heat pipe type exhaust heat recovery system was manufactured and tested in this experiment. The exhaust heat recovery system was made for space heating in the greenhouse. The system consisted of a heat exchanger made of heat pipes, ${\emptyset}15.88{\times}600mm$ located in the rectangular box of $600{\times}550{\times}330mm$, a blower and air ducts. The rectangular box was divided by two compartments where hot chamber exposed to exhaust gas in which heat pipes could pick up the heat of exhaust gas, and by evaporation of the heat transfer medium in the pipes it carries the heat to the cold compartment, then the blower moves the heat to greenhouse. The number of heat pipe was 60, calculated considering the heat exchange amount between flue gas and heat transfer capacity of heat pipe. The working fluid of heat pipe was acetone because acetone is known for its excellent heat transfer capacity. The system was attached to the exhaust gas path. According to the performance test it could recover 53,809 to 74,613kJ/hr depending on the inlet air temperature of 12 to $-12^{circ}C$ respectively when air flow rate $1,100\textrm{m}^3/hr$. The exhaust gas temperature left the heat exchanger dropped to $100^{circ}C$ from $270^{circ}C$ by the heat exchange between the air and the flue gas, the temperature difference was collected by the air and the warm air temperature was about $60^{circ}C$ at the air flow rate of $1,100\textrm{m}^3/hr$. This heat pipe type exhaust heat recovery system can reduce fuel cost by 10% annually according to the economic analysis.

  • PDF

A Study on the Possibility of using Light-Wall Stainless Steel Pipe for Water-Based Fire Protection System (수계소화설비용 경량벽 스테인리스 강관의 사용가능성 평가에 관한 연구)

  • Nam, Jun-Seok;Won, Sung-Yeun;Kim, Yong-Ho;Min, Kyung-Tak;Park, Seung-Min
    • Fire Science and Engineering
    • /
    • v.24 no.5
    • /
    • pp.94-101
    • /
    • 2010
  • The pipes using in water-based fire protection systems are used steel pipes for ordinary piping, carbon steel pipes for pressure service, copper and copper alloy seamless pipes and tubes, etc. By last buildings of high-rising, complexity, in fire protection systems, the corrosion resistance, easy construction, lightweight and cost-effective use of the pipes is being considered. Among the pipes, the possibility of used for fire protection system being used in the existing copper pipe of material properties, strength, corrosion resistance, heat resistance through and compare the performance was evaluated. As a result of that assessment light gauge stainless steel pipes for ordinary piping (KS D 3595) at a water pressure of less than 1.2 MPa can be used in sufficient physical properties, strength, corrosion resistance, heat resistance and have been observed.

The Experimental Study on Load Transfer Mechanisms in Non-slip Device of Steel Pipe Pile Cap (강관말뚝 머리결합부의 미끄럼 방지턱에 관한 하중전달 메카니즘 연구)

  • Kim, Young-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.1
    • /
    • pp.221-229
    • /
    • 2004
  • In Recent experimental research results of connection method between steel pipe pile and concrete footing are provided based on various experimental observations. It gives a shedding light toward developing better connection method for steel pipe pile at the field application. In this study, the newly developed method is tested for compressive, pull put and combination load including moment with carefully designed monitoring system. The measured data show that new method have at least equivalent or better load resistant capacities compared with those of specified method in Korea Road Design Specification. It is also tried to define and investigate the load transfer mechanism for new method.

Study on the Systematic Technology of Promoting Purification for the Livestock Wastewater and Reuse

  • Okada, Yoshiichi;Shim, Jae-Do;Mitarai, Masahumi;Kojima, Takayuki;Gejima, Yoshinori
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1996.06c
    • /
    • pp.692-700
    • /
    • 1996
  • The objective of this study is to develop a systematic purification plant using the metabolism of aerobic microorganisms. This system is subsequently aerated and continuously removes suspended solids and settling sludges caused by aerating pressure at the bottom of a lower pipe (i.e., Continuous Removal of Suspended solids and Settling sludges, CRSS). The CRSS plants are brought out by introducing fine air bubbles into the liquid phase of a lower pipe in the bio-reactor. These plant uses aeration pipe, with multiple inlets to sweep the floor of bio-reactor tank, instead of the conventional scraper mechanisms. The principal advantage of this system is that it can continuously remove very small or light particles that settles completely within a short time. Once the particles have been floated to the surface, they can be moved into the pipe and collected in the settling tank by sequently aerated pressure. The experimental results shows that about 99.0% of the biochemical oxygen demand(BOD), 99.3% of the suspended solid(SS), 92.3% of the total nitrogen(T-N), 99.0% of the turbidity(TU), 100% of the total coliform(TC)and ammonia was respectively removed during aerobic digestion for 9 days. These result indicates that the CRS S plants are very effective for reduction and deodorization of swine wastewater contaminants, and the efflux from CRS S can either be discharged in the river or used as nutrient solution of formulation for plant growth factories. The developed CRSS plant proved to be flexible and it can simply be adapted to any type of biological waste treatment problem.roblem.

  • PDF