• 제목/요약/키워드: Light harvesting complex

검색결과 46건 처리시간 0.022초

인삼(Panax ginseng C.A. Meyer) 잎의 생장과정에 따른 엽록체 미세구조 및 틸라코이드막 단백질의 변화 (Changes of Chloroplast Ultrastructure and Thylakoid Membrane Proteins during Growth of Ginseng (Panax ginseng C.A. Meyer) Leaf)

  • 안정숙;박훈;김우갑
    • Journal of Ginseng Research
    • /
    • 제19권3호
    • /
    • pp.275-280
    • /
    • 1995
  • The formation of thylakoid membrane proteins and changes in the chloroplast ultrastructure of ginseng leaf were investigated as a function of time following the leaf emergence. The leaf chloroplast obtained just after the leaf emergence showed short rod-like thylakoids which were connected and arranged in 3~4 layers along the longitudinal axis of the chloroplast. The 10 DAE (days after emergence) chloroplast started to form grana structure. The typical grana structure was observed 17 DAE, and the grana was fully developed 28 DAE. The membrane proteins obtained from just after emerging leaf were separated into many minor bands indicating no CP-complex formation yet. LHC II was detected after 10 days. CP 47 and CP 43 were detected after 17 days. After 28 days, the PS I and PS II proteins were distinctly separated into CP 1, LHC II, CP 47, CP 43, CP 29, CP 27+24. Thus, the appearance of the light harvesting protein, LHC II, which was concentrated in grana stacks, was consis tent in time with the formation of grana stacks 17 DAE. Key words Chloroplast ultrastructure, grana, CP-complex, LHC II.

  • PDF

Two Dimensional Electronic Spectroscopy

  • Fleming, Graham R.;Yang, Min-O;Agarwal, Ritesh;Prall, Bradley S.;Kaufman, Laura J.;Neuwahl, Fred
    • Bulletin of the Korean Chemical Society
    • /
    • 제24권8호
    • /
    • pp.1081-1090
    • /
    • 2003
  • Two different electronically resonant two-dimensional spectroscopies are described. The first, two-color photon echo peak shift spectroscopy, is sensitive to correlations in transition frequency between the initial and probed (final) states. It provides new insight into the mechanism of ultrafast solvation and should prove useful for characterizing dynamics in inhomogeneous systems in general. The second technique, fifth order threepulse scattering, contains two coherence periods whose durations are controlled. The entire two-dimensional surface was recorded for a dye molecule in dilute solution and a photosynthetic light-harvesting complex. The data provide insight into the short-time dynamics of solvation and exciton relaxation, respectively.

Flotation of cyanobacterial particles without chemical coagulant under auto-flocculation

  • Kwak, Dong-Heui;Kim, Tae-Geum;Kim, Mi-Sug
    • Membrane and Water Treatment
    • /
    • 제9권6호
    • /
    • pp.447-454
    • /
    • 2018
  • Although flotation techniques are often used for the removal of algal particles, the practicality of algae-harvesting technologies is limited owing to the complex and expensive facilities and equipment required for chemical coagulation. Here, we examined the feasibility of an approach to separating algal particles from water bodies without the need for chemical coagulants, depending on the condition of the algae, and to determine the optimal conditions. Using Anabaena sp., a cyanobacterium causes algal blooms in lakes, we stimulated auto-flocculation in algal particles without coagulants and conducted solid-liquid separation experiments of algal particles under various conditions. The six cultivation columns included in our analysis comprised four factors: Water temperature, light intensity, nutrients, and carbon source; auto-flocculation was induced under all treatments, with the exception of the treatment involving no limits to all factors, and algal particles were well-settled under all conditions for which auto-flocculation occurred. Meanwhile, flotation removal of auto-flocculated algal particles was attained only when nutrients were blocked after algae were grown in an optimal medium. However, no significant differences were detected between the functional groups of the extracellular polymeric substances (EPSs) of floated and settled algal particles in the FT-IR peak, which can cause attachment by collision with micro-bubbles.

Current Understanding of the Mechanism of qE, a Major Component of Non-photochemical Quenching in Green Plants

  • Zulfugarov Ismayil S.;Mishra Sujata R.;Han, Ok-Kyung;Safarova Rena B.;Nath Krishna;Lee, Choon-Hwan
    • Journal of Photoscience
    • /
    • 제12권3호
    • /
    • pp.175-183
    • /
    • 2005
  • Plants dissipate excess excitation energy from their photosynthetic apparatus by a process called non-photochemical quenching (NPQ). The major part of NPQ is energy dependent quenching (qE) which is dependent on the thylakoid pH and regulated by xanthophyll cycle carotenoids associated with photosystem (PS) II of higher plants. The acidification of the lumen leads to protonation and thus conformational change of light harvesting complex (LHC) proteins as well as PsbS protein of PSII, which results in the induction of qE. Although physiological importance of qE has been well established, the mechanistic understanding is rather insufficient. However, recent finding of crystal structure of LHCII trimer and identification of qE mutants in higher plants and algae enrich and sharpen our understanding of this process. This review summarizes our current knowledge on the qE mechanism. The nature of quenching sites and components involved in this process, and their contribution and interaction for the generation of qE appeared in the proposed models for the qE mechanism are discussed.

  • PDF

Luminescent Lanthanide Complexes for Advanced Photonics Applications

  • Eom, Yu Kyung;Ryu, Jung Ho;Kim, Hwan Kyu
    • Rapid Communication in Photoscience
    • /
    • 제1권1호
    • /
    • pp.1-9
    • /
    • 2012
  • Luminescent lanthanide complexes have been overviewed for advanced photonics applications. Lanthanide(III) ions ($Ln^{3+}$) were encapsulated by the luminescent ligands such as metalloporphyrins, naphthalenes, anthracene, push-pull diketone derivatives and boron dipyrromethene(bodipy). The energy levels of the luminescent ligands were tailored to maintain the effective energy transfer process from luminescent ligands to $Ln^{3+}$ ions for getting a higher optical amplification gain. Also, key parameters for emission enhancement and efficient energy transfer pathways for the sensitization of $Ln^{3+}$ ions by luminescent ligands were investigated. Furthermore, to enhance the optophysical properties of novel luminescent $Ln^{3+}$ complexes, aryl ether-functionalized dendrons as photon antennas have been incorporated into luminescent $Ln^{3+}$ complexes, yielding novel $Ln^{3+}$-cored dendrimer complex such as metalloporphyrins, naphthalenes, and anthracenes bearing the Fr$\acute{e}$chet aryl-ether dendrons, namely, ($Er^{3+}-[Gn-Pt-Por]_3$ (terpy), $Er^{3+}-[Gn-Naph]_3$(terpy) and $Er^{3+}-[Gn-An]_3$(terpy)). These complexs showed much stronger near-IR emission bands at 1530 nm, originated from the 4f-4f electronic transition of the first excited state ($^4I_{13/2}$) to the ground state ($^4I_{15/2}$) of the partially filled 4f shell. A significant decrease in the fluorescence of metalloporphyrins, naphthalenes and anthracene ligand were accompanied by a strong increase in the near IR emission of the $Ln^{3+}$ ions. The near IR emission intensities of $Ln^{3+}$ ions in the lanthanide(III)-encapsulated dendrimer complexes were dramatically enhanced with increasing the generation number (n) of dendrons, due to the site-isolation and the light-harvesting(LH) effects. Furthermore, it was first attempted to distinguish between the site-isolation and the light-harvesting effects in the present complexes. In this review, synthesis and photophysical studies of inert and stable luminescent $Ln^{3+}$ complexes will be dealt for the advanced photonics applications. Also, the review will include the exploratory investigation of the key parameters for emission enhancement and the effective energy transfer pathways from luminescent ligands to $Ln^{3+}$ ions with $Ln^{3+}$-chelated prototype complexes.

염료감응 태양전지를 위한 무금속 유기염료의 합성 (Synthesis of Metal-free Organic Dye for Dye-sensitized Solar Cell)

  • Pattarith, K.;Pungwiwat, N.;Laosooksathit, S.
    • 대한화학회지
    • /
    • 제55권2호
    • /
    • pp.279-282
    • /
    • 2011
  • 염료감을 태양전지(DSSC)는 대체에너지 집적제로서 낮은 생산단가로 고에너지 전환 효과를 볼 수 있다. 친환경적이며 효과가 큰 무금속 염료감응제의 개발이 중요하다. 본 연구에서 유기 감광제로 6,6'-(1,2,5-oxadiazole-3,4-diyl)dipyridine-2,4-dicarboxylic acid(3A)을 합성하였다. 이 감광제를 사용하여 광전환효율(${\eta}$)이 1.00%를 달성함을 발견하였다. 같은 조건에서 루테늄착물(N719)은 4.02%의 광전환효율을 나타내었다.

Effect of ABA on Disassembly of Chloroplast during Senescence in Detached Leaves of Zea mays

  • Lee, Dong-Hee;Seo, Young-Hee;Kim, Young-Sang
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • 제3권3호
    • /
    • pp.177-188
    • /
    • 1999
  • The effect of ABA on the chloroplast disassembly of Zea mays was investigated by measuring the changes in the relative distribution of chlorophyll(Chl) between the Chl-protein complexes in ABA treated and untreated sensecting leaves. The reaction center(RC)-light harvesting complex(LHC) regions were rapidly disassembled in the late stage of dark-induced senescence. Plus, during dark-induced senescence, the disassembly of a reaction center of P700 apoproteins containing mainly Chl a was faster than that of a reaction center of LHCI apoproteins containing both Chl a and Chl b. The increase in the relative distribution of Chl-protein complexes in the RC-Core2 in the late stage of senescence was due to the accumulation of core complexes such as CP47/43 and reaction centers including D1/D2 apoproteins disassembled from the RC-Corel containing the dimer of D1/D2 apoproteins. The LHCII region was more stable than the other Chl-protein complexes throughout leaf senscence. Accordingly, it is suggested that the preferential breakdown of Chl a gives rise to the disassembly of Chl a-binding proteins, particularly reaction centers and core complexes during dark-induced senescence, plus the primary target of the photosynthetic apparatus in sensecing leaves would seem to be Chl a along with the proteins associated with Chl a. The application of ABA promoted the disassembly of the P700 apoproteins in the PSI reaction center and the dimer of D1/D2 apoproteins, and the conversion of the trimeric LHCII apoprotein to the monometirc LHCII apoprotein during the middle stage of leaf senescence, thereby suggesting that ABA accelerates the disassembly of both Chl a-binding and Chl a+b-binding proteins, particularly Chl a-binding proteins during the middle stage of leaf senescence.

  • PDF

Leaf Senescence in a Stay-Green Mutant of Arabidopsis thaliana: Disassembly Process of Photosystem I and II during Dark-Incubation

  • Oh, Min-Hyuk;Kim, Yung-Jin;Lee, Choon-Hwan
    • BMB Reports
    • /
    • 제33권3호
    • /
    • pp.256-262
    • /
    • 2000
  • In this study the disassembly process of chlorophyII (ChI)protein complexes of a stay-green mutant (ore10 of Arabidopsis thaliana) was investigated during the dark incubation of detached leaves. During this dark-induced senescence (DIS), the Chi loss was delayed in the mutant, while the photochemical efficiency of photosystem II (PSII) or Fv/Fm was accelerated when compared with the wild type (WT) leaves. This indicates that the decrease in Fv/Fm is a separate process and not causally-linked to the degradation of Chi during DIS of Arabidopsis leaves. In the native green gel electrophoresis of the Chi-protein complexes, which was combined with an additional twodimensional SDS-PAGE analysis, the delayed senescence of this mutant was characterized by the appearance of an aggregate at 1 d or 2 d, as well as very stable light harvesting complex II (LHCII) trimers until 5 d after the start of DIS. The polypeptide composition of the aggregates varied during the whole DIS at 5 d. Dl protein appeared to be missing in the aggregates. This result supports the idea of a faster depletion of functional PSH in the mutants compared with WT, as suggested by the earlier reduction of Fv/Fm and the stable Chl a/b ratio in the mutants. At 5 d, the WT leaves also often showed aggregates, but the polypeptide composition was different from those of ore10. The results presented suggest that the formation of aggregates, or stable LHCII trimers in the stay-green mutants, is a way to structurally protect Chi-protein complexes from serious proteolytic degradation. Detailed disassembly processes of Chi-protein complexes in WT and ore10 mutants are discussed.

  • PDF

Effects of Ultraviolet-B Radiation on Growth and Photosynthesis in Cucumber Primary Leaves

  • Kim, Hyo-Jin;Kim, Tae-Yun;Hong, Jung-Hee
    • 한국환경과학회지
    • /
    • 제15권12호
    • /
    • pp.1093-1101
    • /
    • 2006
  • In the present study we studied the growth, photosynthetic traits and protective mechanisms against oxidative stress in the primary loaves of cucumber (Cucumis sativus L.) seedlings with or without UV-B treatment. Cucumber seedings were irradiated with UV-B for 10 days in environment-controlled growth chambers. The primary leaves irradiated with UV-B showed reduction in leaf length and decreased biomass production. The reduced biomass production seemed to be due to a negative effect of UV-B radiation on the photosynthetic process. Changes in chemical properties of leaf, such as chi a/b ratio affected photosynthesis. UV-B significantly affected chl b content compared with chi a in the light harvesting complex resulting reduced photosynthetic activity Fv/Fm decreased with an UV-B stress, suggesting that the photosynthetic apparatus, and particularly, PS II was damaged under UV-B stress. Malondialdehyde(MDA) concentration which represents the state of membrane lipid peroxidation Increased significantly under UV-B stress confirming an oxidative stress. UV-B exposure with SA solution(0.1-1.0 mM) can partially ameliorated some of the detrimental effects of UV-B stress. Leaf injuries including loss of chlorophyll and decreased ratio of Fv/Fm were reduced with combined application of UV-B and SA. ABA and JA showed similar mode of action in physiological effects on photosynthetic activities though the levels were lower than those from SA treated plants. Chloroplast ultrastructure was also affected by UV-B exposure. The thickness of leaf tissue components decreased and the number of grana and thylakoids was reduced in chloroplast applied UV-B or SA alone. At combined stress granal and stromal thylakoids were less affected. The leaves under combined stress acquired a significant tolerance to oxidative stress. From these results, it can be suggested that SA may have involved a protective role against UV-B induced oxidative damage.

고려인삼 Chlorophyll a/b Binding Protein(Cab) 유전자의 동정 및 분자적인 특성분석 (Molecular Characterization of a cDNA Encoding Chlorophyll a/b Binding Protein (Cab) from Panax ginseng C. A. Meyer)

  • 인준교;이범수;윤재호;손화;김세영;양덕춘
    • 한국자원식물학회지
    • /
    • 제18권3호
    • /
    • pp.441-449
    • /
    • 2005
  • 광계II(PSII)는 고등식물의 chloroplast에서 두 개의 광합성 반응중심 중의 하나이다. Chlorophyll a/b 광수확 복합체는 광계II를 위한 안테나 역할을 수행한다. 본 연구에서는 인삼의 잎조직을 제작한 cDNA library로부터 chlorophyll a/b-binding protein (Cab) 유전자를 분리하였다. 인삼 Cab유전자는 935 bp의 염기와 265개의 아미노산 잔기(pI 5.63)로 구성된 한 개의 ORF를 포함하고 있으며, 단백질의 분자량은 28.6 kDa으로 추정되었다. 인삼에서 분리한 Cab 유전자는 기존에 식물에서 보고된 유전자들과 유사성을 나타내었으며, 유사도는 $68-92\%$로 나타났다. 아미노산 서열을 비교하여 유연관계를 분석한 결과 인삼의 Cab 유전자는 비교된 P. persica (AAC34983), A.thaliana (AAD28771), G. hirsutum (CAA38025), G. max (AAL29886), V. radiata (AAF89205) 등과 동일한 그룹으로 분리되었다.