DOI QR코드

DOI QR Code

Luminescent Lanthanide Complexes for Advanced Photonics Applications

  • Eom, Yu Kyung (Department of Advanced Materials Chemistry and WCU Center for Next Generation Photovoltaic Systems, Korea University) ;
  • Ryu, Jung Ho (Department of Advanced Materials Chemistry and WCU Center for Next Generation Photovoltaic Systems, Korea University) ;
  • Kim, Hwan Kyu (Department of Advanced Materials Chemistry and WCU Center for Next Generation Photovoltaic Systems, Korea University)
  • Received : 2012.01.09
  • Accepted : 2012.02.20
  • Published : 2012.03.01

Abstract

Luminescent lanthanide complexes have been overviewed for advanced photonics applications. Lanthanide(III) ions ($Ln^{3+}$) were encapsulated by the luminescent ligands such as metalloporphyrins, naphthalenes, anthracene, push-pull diketone derivatives and boron dipyrromethene(bodipy). The energy levels of the luminescent ligands were tailored to maintain the effective energy transfer process from luminescent ligands to $Ln^{3+}$ ions for getting a higher optical amplification gain. Also, key parameters for emission enhancement and efficient energy transfer pathways for the sensitization of $Ln^{3+}$ ions by luminescent ligands were investigated. Furthermore, to enhance the optophysical properties of novel luminescent $Ln^{3+}$ complexes, aryl ether-functionalized dendrons as photon antennas have been incorporated into luminescent $Ln^{3+}$ complexes, yielding novel $Ln^{3+}$-cored dendrimer complex such as metalloporphyrins, naphthalenes, and anthracenes bearing the Fr$\acute{e}$chet aryl-ether dendrons, namely, ($Er^{3+}-[Gn-Pt-Por]_3$ (terpy), $Er^{3+}-[Gn-Naph]_3$(terpy) and $Er^{3+}-[Gn-An]_3$(terpy)). These complexs showed much stronger near-IR emission bands at 1530 nm, originated from the 4f-4f electronic transition of the first excited state ($^4I_{13/2}$) to the ground state ($^4I_{15/2}$) of the partially filled 4f shell. A significant decrease in the fluorescence of metalloporphyrins, naphthalenes and anthracene ligand were accompanied by a strong increase in the near IR emission of the $Ln^{3+}$ ions. The near IR emission intensities of $Ln^{3+}$ ions in the lanthanide(III)-encapsulated dendrimer complexes were dramatically enhanced with increasing the generation number (n) of dendrons, due to the site-isolation and the light-harvesting(LH) effects. Furthermore, it was first attempted to distinguish between the site-isolation and the light-harvesting effects in the present complexes. In this review, synthesis and photophysical studies of inert and stable luminescent $Ln^{3+}$ complexes will be dealt for the advanced photonics applications. Also, the review will include the exploratory investigation of the key parameters for emission enhancement and the effective energy transfer pathways from luminescent ligands to $Ln^{3+}$ ions with $Ln^{3+}$-chelated prototype complexes.

Keywords

References

  1. Kim,H.K.;Roh,S.-G. ; Hong, K.-S. ; Ka, J.-W. ; Baek, N.S. ; Oh, J.B. ; Nah, M.K. ; Ma, S.M. ; Cha, Y.H. ; Ko, J. Macromol. Res. 2003, 11, 133-145. https://doi.org/10.1007/BF03218343
  2. Kim, H. K.; Oh, J.B.; Baek, N. S.;Roh, S.-G.; Nah, M. K.; Kim, Y.H. Bull.Kor.Chem.Soc. 2005, 26, 201-214. https://doi.org/10.5012/bkcs.2005.26.2.201
  3. Desurvire, E;.Erbium-dorped Fiber Amplifiers: Principles and Applications, John Wiley & sons, Inc., New York, 2002, vol. 2, 1-77
  4. Oude Wolbers, M. P.; van Veggel,F.C.J.M.;Peters, G.A.;van Beelen, E. S. E.; Hofstraat, J. W.; Guerts, F. A. J.; Reinhoudt, D. N. Chem. Eur. J. 1998, 4, 772-780. https://doi.org/10.1002/(SICI)1521-3765(19980515)4:5<772::AID-CHEM772>3.0.CO;2-3
  5. Slooff, L. H.;Polman, A.; Oude Wolbers, M. P.; van Veggel, F. C. J. M.; Reinhoudt, D. N.; Hofstraat, J. W. J. Appl. Phys. 1998, 83, 497-503. https://doi.org/10.1063/1.366721
  6. Klink, S. I.; Reinhoudt, D. N.; van Veggel, F. C. J. M.;Werts, M. H. V.; Guerts, F. A. J.; Hofstraat, J.W. J.Phys.Chem. A. 2000,104, 5457-5468. https://doi.org/10.1021/jp994286+
  7. Slooff, L. H.; Polman, A.;Klink, S. I.; Hebbink, G. A.; Grave, L. vanVeggel, F.C.J.M.; Reinhoudt, D. N.; Hofstraat, J. W. Opt. Mater. 2000, 14, 101-107. https://doi.org/10.1016/S0925-3467(99)00119-6
  8. Slopff,L.H.;Polman, A.;Cacialli, F.;Friend, R. H.; Hebbink, G. A.; van Veggel, F. C. J. M.; Reinhoudt, D. N. Appl. Phys.Lett. 2001, 78, 2122-2124. https://doi.org/10.1063/1.1359782
  9. Werts, M. H. V.; Hofstraat, J. W.; Geurts, F. A. J.;Verhoever, J. W. Chem. Phys. Lett. 1997, 276, 196-201. https://doi.org/10.1016/S0009-2614(97)00800-2
  10. Gilllin, W. P.; Curry R. J. Appl. Phys. Lett.1999, 74,798-799. https://doi.org/10.1063/1.123371
  11. Curry, R. J.;Gillin, W.P. Appl. Phys. Lett. 1999, 75, 1380-1382. https://doi.org/10.1063/1.124700
  12. Thompson, J.; Blyth, R. I. R.; Gigli, G.; Cingolani, R. Adv. Funct. Mater. 2004, 14, 979-984. https://doi.org/10.1002/adfm.200305169
  13. Kawamura, Y.; Wada, Y.; Hasegawa, Y.;Iwamuro, M.; Kitamura, T.; Yanagita, S. Appl. Phys. Lett. 1999, 74, 3245-3247. https://doi.org/10.1063/1.123357
  14. Hasegawa, Y; Ohkubo, T.; Sogabe, K.;Kawamura, Y.;Wada, Y.; Nakashima, N.; Yanagita, S. Angew, Chem, Int. Ed. Engl. 2000, 39, 357-360 . https://doi.org/10.1002/(SICI)1521-3773(20000117)39:2<357::AID-ANIE357>3.0.CO;2-M
  15. Kang, T-S.; Harrison, B. S.; Foley, T. J.; Knefely, A. S.; Boncella, J. M.; Reynolds, J. R.; Schanze, K. S. Adv. Mater. 2003, 15, 1093-1097. https://doi.org/10.1002/adma.200304692
  16. Kawa M.; Frchet, J. N. J. Chem. Mater. 1998, 10, 286-296. https://doi.org/10.1021/cm970441q
  17. Gschneidner, K. A. Jr.Bunzli, J.-C. G.; Percharsky V. K. Eds. Handbook on the Physics and Chemistry of Rare Earths, Elsevier B.V., Amsterdam, 2007, vol. 37, pp. 217-470.
  18. Korovin, Y. V.;Rusakova, N. V. Rev. Inorg. Chem. 2001, 21, 299-329.
  19. Wang, Q. M.; Sasaki, S.;Tamiaki, H. Chem. Lett. 2009, 38, 648-649. https://doi.org/10.1246/cl.2009.648
  20. Andrews, M.; Ward, B. D.; Laye, R. H.; Kariuki, B. M.; Pope, S. J. A. Helv. Chim. Acta.2009, 92, 2159-2172. https://doi.org/10.1002/hlca.200900108
  21. Crosby, G. A.; Kasha, M. Spectrochim. Acta. 1958, 10, 377-382. https://doi.org/10.1016/0371-1951(58)80105-8
  22. Khreis, O. M.; Curry, R. J.; Somerton, M.;Gillin, W. P. J. Appl. Phys. 2000, 88, 777-780. https://doi.org/10.1063/1.373803
  23. Khreis, O. M.;Gillin, W. P.; Somerton, M.; Curry, R. J. Org. Electr. 2001, 2, 45-51. https://doi.org/10.1016/S1566-1199(00)00014-8
  24. Albrecht, M.;Osetska, O.;Klankermayer, J.;FrOhlich, R.;Gumy, F.;Bunzli, J. C. G. Chem. Commun. 2007, 18, 1834-1836.
  25. Shavaleev, N. M.;Scopelliti, R.;Gumy, F.;Bunzli, J. C. G. Inorg. Chem. 2009, 48, 7937-7946. https://doi.org/10.1021/ic900888m
  26. Samuel, J.;Tallec, G.;Cherns, P.; Ling, W. L.;Raccurt, O.;Poncelet, O.;Imbert, D.;Mazzanti, M. Chem. Commu. 2010, 46 2647-2649. https://doi.org/10.1039/b926031e
  27. Nonat, A.;Imbert, D.;P?caut, J.; Giraud, M.;Mazzanti, M. Inorg. Chem. 2009, 48. 4207-4218. https://doi.org/10.1021/ic9000076
  28. He, H.; May, P. S.;Galipeau, D. Dalton Trans. 2009, 24, 4766-4771.
  29. Hebbink G. A.; Grave, L.;Woldering, L. A.;Reinhoudt, D. N.; VanVeggel, F. C. J. M. J. Phys. Chem. 2003, 107, 2483-2491. https://doi.org/10.1021/jp0260090
  30. VOgtle, F. Gorka, M.;Vicinelli, V.;Ceroni, P.;Maestri, M.;Balzani, V. Chem. Phys. Chem. 2001, 2, 769-773. https://doi.org/10.1002/1439-7641(20011217)2:12<769::AID-CPHC769>3.0.CO;2-6
  31. Vicinelli, V.; Ceroni, P.; Maestri, M.; Balzani, V. J. Am. Chem. Soc. 2002, 21, 6461-6468.
  32. Pitois, C.;Vestberg, R.; Rodlert, M.;Malmstrom, E.;Hult, A.; Lindgren, M. Opt. Mater. 2003, 21, 499-506. https://doi.org/10.1016/S0925-3467(02)00190-8
  33. Pitois, C.;Hult, A.; Lindgren, M. J. Lumin.2005, 111, 265-283. https://doi.org/10.1016/j.jlumin.2004.10.007
  34. Saudan, C.;Ceroni, P.;Vicinelli, V.;Maestri, M.;Balzani, V.;Gorka, M.; Lee, S.K.; van Heyst, J.;Vogtle, F.Dalton Trans. 2004, 10, 1597-1600.
  35. Giansante, C.;Ceroni, P.;Balzani, V.;VOgtle, F. Angew. Chem. Int. Ed. 2008, 47, 5422-5425. https://doi.org/10.1002/anie.200801334
  36. Oh, J.B.; Nah, M. K.; Kim, Y. H.; Kang, M. S.; Ka, J. - W.; Kim, H. K. Adv. Funct. Mater. 2007, 17, 413-424.
  37. Nah, M. ?K.; Oh, J. B.; Kim, H. K.; Choi, K. -H.; Kang, J.-G. J. Phys. Chem. A. 2007, 111, 6157-6164. https://doi.org/10.1021/jp0688512
  38. Kim, Y. H.; Baek, N. S.; Oh, J.B.; Nah, M. K.; Roh, S. -G.; Song, B. J.; Kim, H. K. Macromol. Res. 2007, 3, 272-279
  39. Oh, J. B.; Kim, Y. H.; Nah, M. K.; Kim, H. K. J. Lumin. 2005, 111, 255-264. https://doi.org/10.1016/j.jlumin.2004.10.006
  40. Ryu, J. H.Eom, Y. K.Bunzli, J.-C. G. Kim,H. K. New J. Chemistry. 2011, 36, 723-731.
  41. Kaplyanskii, A. A; Kaplyanskii, R. M. Spectroscopy of Solids Containing Rare Earth Ions., North-Holland: Amsterdam, 1987, vol. 21, 51 - 184.
  42. Judd, B. R. Phys. Rev. 1962, 127, 750-761. https://doi.org/10.1103/PhysRev.127.750
  43. Ofelt, G. S. J. Chem. Phys. 1962, 37, 511-520. https://doi.org/10.1063/1.1701366
  44. Wybourne, B. G. Spectroscopic Properties of Rare Earths; Interscience: New York, 1965
  45. Axe, J. D. J. Chem. Phys. 1963, 39, 1154-1160. https://doi.org/10.1063/1.1734405
  46. Barasch, G. E.; Dieke, G. H. J. Chem. Phys. 1965, 43, 988-994. https://doi.org/10.1063/1.1696882
  47. Riseberg, L. A.; Moos, H. W. Phys. Rev. Lett. 1967, 19, 1423-1426. https://doi.org/10.1103/PhysRevLett.19.1423
  48. Riseberg, L. A.; Moos, H. W. Phys. Rev. 1968, 174, 429-438. https://doi.org/10.1103/PhysRev.174.429
  49. Oude Wolbers, M. P.; van Veggel, F. C. J. M.; Snellink- Ruel, B. H.M.; Hofstraat, J. W.; Geurts, F. A. J.; Reinhoudt, D. N. J. Am. Chem. Soc. 1997, 119, 138-144. https://doi.org/10.1021/ja9609314
  50. Hebbink, G. A.; Klink, S. I.; Grave, L.; Alink, P. G. B. O.; van Veggel, F. C. J. M. ChemPhysChem. 2002, 3, 1014-1018. https://doi.org/10.1002/cphc.200290002
  51. Baek, N.S. Kim, Y. H.; Roh, S.-G. Kwak, B. K.; Kim, H. K, Adv. Funct. Mater. 2006, 16, 1873-1882. https://doi.org/10.1002/adfm.200500835
  52. Kim, Y. H.; Baek, N. S.; Kim, H. K. ChemPhysChem 2006, 7, 213-221. https://doi.org/10.1002/cphc.200500291
  53. Baek, N.S.; Kim, Y. H.; Kim, H. K, Bull. Kor. Chem. Soc. 2006, 27, 1729-1730. https://doi.org/10.5012/bkcs.2006.27.11.1729
  54. Roh, S.-G.; Baek, N. S.; Hong, K.-S.; Kim, H. K. Bull. Kor. Chem. Soc. 2004, 25, 343-344. https://doi.org/10.5012/bkcs.2004.25.3.343
  55. Baek, N. S.; Kim, Y. H.; Eom, Y. K.; Oh, J. H.; Kim, H.K.; Aebischer, A.; Gumy, F.; Chauvin, A.-S.; BOnzli, J.-C.G. Dalton Trans. 2010, 39, 1532-1538. https://doi.org/10.1039/b915893f

Cited by

  1. Synthesis and characterization of Er2O3 nanorods and nanosheets vol.43, pp.2, 2017, https://doi.org/10.1016/j.ceramint.2016.10.182