• Title/Summary/Keyword: Light field imaging

Search Result 130, Processing Time 0.023 seconds

Optimization of Wavefront Coding Phase Mask Applied to 5X-40X Micro-Objectives Simultaneously

  • Liu, Jiang;Miao, Erlong;Sui, Yongxin;Yang, Jianghuai
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.5
    • /
    • pp.487-493
    • /
    • 2015
  • A wavefront coding (WFC) technique provides an extension of the depth of field for a microscopy imaging system with slight loss of image spatial resolution. Through the analysis of the relationship between the incidence angle of light at the phase mask and the system pupil function, a mixing symmetrical cubic phase mask (CPM) applied to 5X-40X micro-objectives is optimized simultaneously based on point-spread function (PSF) invariance and nonzero mean values of the modulation transfer function (MTF) near the spatial cut-off frequency. Optimization results of the CPM show that the depth of field of these micro-objectives is extended 3-10 times respectively while keeping their resolution. Further imaging simulations also prove its ability in enhancing the defocus imaging.

Use of a Prism to Compensate the Image-shifting Error of the Acousto-optic Tunable Filter (음향광학변조필터의 이미지 이동 보상을 위한 프리즘 제안)

  • Ryu, Sung-Yoon;You, Jang-Woo;Kwak, Yoon-Keun;Kim, Soo-Hyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.5
    • /
    • pp.89-95
    • /
    • 2008
  • The Acousto-Optic Tunable Filter (AOTF) is a high-speed full-field monochromator which generates two spectrally filtered light beams with ordinary and extraordinary polarization state. Thus, AOTF is widely used to build full-field spectral imaging system or spectral domain interferometer. However, AOTF has a big problem that the angle of diffracted light changes according to the scanning of wavelength, which makes image shift on CCD plane In this paper, we propose an analytic design of prism system to compensate the image shift. The detailed analysis of light paths in a prism and basic experimental results are presented to verify our proposed compensation method. The experimental results agree with simulation results based on suggested prism model and image shift is minimized at optimal condition. Also, it can be extended to compensate the image shift for ordinary and extraordinary polarized light simultaneously.

2019 Total Solar Eclipse Expedition of KASI

  • Bong, Su-Chan;Yang, Heesu;Lee, Jae-Ok;Kim, Jinhyun;Jeon, Young-Beom;Jang, Bi-Ho;Seough, Jungjoon;Park, Young-Deuk
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.69.2-69.2
    • /
    • 2020
  • Korea Astronomy and Space Science Institute (KASI) is developing a coronagraph to measure the coronal electron density, temperature, and speed utilizing spectral change of the K-corona around 400 nm. However, near UV light is more affected by atmospheric effect on the ground than visible light. For the total solar eclipse on July 2 2019, KASI organized an expedition team to test the possibility of the similar measurement scheme in the visible light. The observation site was in Las Flores, San Juan, Argentina. We built an imaging spectrograph using micro lenslet array and grism, named Coronal Integral Field Spectrograph (CorIFS). In addition, images of white light corona, wide field background, and all sky were taken with various camera settings. We present the preliminary results of the expedition.

  • PDF

Applications of Optical Imaging System in Dentistry

  • Eom, Joo Beom;Park, Anjin
    • Medical Lasers
    • /
    • v.9 no.1
    • /
    • pp.25-33
    • /
    • 2020
  • Optical-based imaging technology has high resolution and can assess images in real time. Numerous studies have been conducted for its application in the dental field. The current research introduces an oral camera that includes fluorescent imaging, a second study examining a 3D intraoral scanner applying a confocal method and a polarization structure that identifies the 3D image of a tooth, and finally, an optical coherence tomography technique. Using this technique, we introduce a new concept 3D oral scanner that simultaneously implements 3D structural imaging as well as images that diagnose the inside of teeth. With the development of light source technology and detector technology, various optical-based imaging technologies are expected to be applied in dentistry.

A Miniaturized Catadioptric Laser-Irradiation-Precision Test System

  • Liu, Huan;Sun, Hao;Wang, Chunyan
    • Current Optics and Photonics
    • /
    • v.5 no.2
    • /
    • pp.164-172
    • /
    • 2021
  • In this paper a catadioptric laser-irradiation-precision test system is designed, to achieve a high-precision laser-irradiation-accuracy test. In this system, we adopt the method of imaging the entire target surface at a certain distance to realize the measurement of laser-irradiation precision. The method possesses the advantages of convenient operation, high sensitivity, and good stability. To meet the test accuracy requirement of 100 mm/km (0.01%), the coma, field curvature, and distortion over the entire field of view should be eliminated from the optical system's design. Taking into account the whole length of the tube and the influence of stray light on the structure type, a catadioptric system with a hood added near the primary imaging surface is designed. After optimization using the ZEMAX software, the modulation transfer function (MTF) of the designed optical system is 0.6 at 30 lp/mm, the full-field-of-view distortion is better than 0.18%, and the energy concentration in the 10-㎛-radius surrounding circle reaches about 90%. The illumination-accuracy test results show that the measurement accuracy of the radiation hit rate is better than 50 mm when the test distance is 1 km, which is better than the requirement of 100 mm/km for the laser-irradiation-accuracy test.

Detection of Opposite Magnetic Polarity in a Light Bridge : Its Emergence and Cancellation in association with LB Fan-shaped Jets

  • Lim, Eun-Kyung;Yang, Heesu;Yurchyshyn, Vasyl;Chae, Jongchul;Song, Donguk;Madjarska1, Maria S.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.45.1-45.1
    • /
    • 2020
  • Light bridges (LBs) are relatively bright structures that divide sunspot umbrae into two or more parts. Chromospheric LBs are known to be associated with various activities including fan-shaped jet-like ejections and brightenings. Although magnetic reconnection is frequently suggested to be responsible for such activities, not many studies presented firm evidence to support the scenario. We carry out magnetic field measurements and imaging spectroscopy of a LB where fan-shaped jet-like ejections occur with co-spatial brightenings at their footpoints. We study their fine photospheric structures and magnetic field changes using TiO images, Near-InfraRed Imaging Spectropolarimeter data, and Hα data taken by the 1.6 m Goode Solar Telescope. As a result, we detect magnetic flux emergence in the LB that is of opposite polarity to that of the sunspot. The new flux cancels with the pre-existing flux at a rate of 5.6×1018 Mx hr-1. Both recurrent jet-like ejections and their footpoint brightenings are initiated at the vicinity of the magnetic cancellation, and show apparent horizontal extension along the LB at a projected speed of 4.3 km s-1 to form the fan-shaped appearance. Based on these observations, we suggest that the fan-shaped ejections may have resulted due to slipping reconnection between the new flux emerging in the LB and the ambient sunspot field.

  • PDF

Stray Light Analysis of a Compact Imaging Spectrometer for a Microsatellite STSAT-3 (과학기술위성3호 부탑재체 소형영상분광기 미광 해석)

  • Lee, Jin Ah;Lee, Jun Ho
    • Korean Journal of Optics and Photonics
    • /
    • v.23 no.4
    • /
    • pp.167-171
    • /
    • 2012
  • This paper reports on the stray light analysis results of a compact imaging spectrometer (COMIS) for a microsatellite STSAT-3. COMIS images Earth's surface and atmosphere with ground sampling distances of 27 m at the 18~62 spectral bands (0.4 ~ 1.05 ${\mu}m$) for the nadir looking at an altitude of 700 km. COMIS has an imaging telescope and an imaging spectrometer box into which three electronics PCBs are embedded. The telescope images a $27m{\times}28km$ area of Earth surface onto a slit of dimensions $11.8{\mu}m{\times}12.1mm$. This corresponds to a ground sampling distance of 27 m and a swath width of 28 km for nadir looking posture at an altitude of 700 km. Then the optics relays and disperses the slit image onto the detector thereby producing a monochrome image of the entrance slit formed on each row of detector elements. The spectrum of each point in the row is imaged along a detector column. The optical mounts and housing structures are designed in order to prevent stray light from arriving onto the image and so deteriorating the signal to noise ratio (SNR). The stray light analysis, performed by a non-sequential ray tracing software (LightTools) with three dimensional housing and lens modeling, confirms that the ghost and stray light arriving at the detector plane has the relative intensity of ${\sim}10^{-5}$ and furthermore it locates outside the concerned image size i.e. the field of view of the optics.

Research on the Applicability of Target-detection Methods for Land-based Hyperspectral Imaging

  • Qianghui Wang;Bing Zhou;Wenshen Hua;Jiaju Ying;Xun Liu;Lei Deng
    • Current Optics and Photonics
    • /
    • v.8 no.3
    • /
    • pp.282-299
    • /
    • 2024
  • Target detection (TD) is a research hotspot in the field of hyperspectral imaging (HSI). Traditional TD methods often mine targets from HSIs under a single imaging condition, without considering the influence of imaging conditions. In fact, the spectra of ground objects in HSIs are uncertain and affected by the imaging conditions (weather, atmospheric, light, time, and other angle conditions including zenith angle). Hyperspectral data changes under different imaging conditions. Therefore, the detection result for a single imaging condition cannot accurately reflect the effectiveness of the detection method used. It is necessary to analyze the performance of various detection methods under different imaging conditions, to find a more applicable detection method. In this paper, we study the performance of TD methods under various land-based imaging conditions. We first summarize classical TD methods and evaluation methods. Then, the detection effects under various imaging conditions are analyzed. Finally, the concepts of the stability coefficient (SC) and effective area under the curve (EAUC) are proposed to comprehensively evaluate the applicability of detection methods under land-based imaging conditions, in terms of both detection accuracy and stability. This is conducive to our selection of detection methods with better applicability in land-based contexts, to improve detection accuracy and stability.

Optical Performance Measurement of the MATS Satellite

  • Park, Woojin;Hammar, Arvid;Lee, Sunwoo;Chang, Seunghyuk;Pak, Soojong
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.1
    • /
    • pp.49.1-49.1
    • /
    • 2018
  • The MATS (Mesosphere Airglow/Aerosol Tomography Spectroscopy) satellite is the next Swedish science microsatellite. We report optical performance test results of the limb telescope, which is the major payload. This telescope is designed with "linear astigmatism-free" (LAF) off-axis optical system in order to have high optical performance across the wide field of view. We measured Modulation Transfer Function (MTF) and Encircled Energy Diameter (EED) of the limb telescope. Full field imaging tests show expected results without linear astigmatism across the full field of view ($5.67^{\circ}{\times}0.91^{\circ}$). Since the amount of stray light is from the earth and the sun, we also simulated and measured the stray light in the field image.

  • PDF

Geometrical QC/QA for Medical Linear Accelerator using Electronic Portal Imaging Devices(EPID) (전자포탈영상장치 (EPID)를 이용한 선형가속기의 기하학적인 QC/QA)

  • Lee, Seok;Lee, Byung-Yong;Cho, Jung-Gil;Kwon, Soo-Il;Jung, Won-Kyu;Kim, Jong-Hoon
    • Progress in Medical Physics
    • /
    • v.8 no.2
    • /
    • pp.59-65
    • /
    • 1997
  • We have designed the software for geometrical QC/QA for medical linear accelerator using electronic portal imaging devices (EPID). The radiation-light field congruence, the collimator rotation axis, and the gantry rotation axis could be estimated with this software. Precision of the system is within 1mm. The collimator and the gantry rotation axis could be measured by superpositioning the images from 4 different collimator (or gantry) angles. The EPID system and the analysis software which was developed in this study make it possible that the quantitative and the objective geometrical QC/QA of the linear accelerator.

  • PDF