• Title/Summary/Keyword: Light curing units

Search Result 57, Processing Time 0.023 seconds

Comparison of light transmittance in different thicknesses of zirconia under various light curing units

  • Cekic-Nagas, Isil;Egilmez, Ferhan;Ergun, Gulfem
    • The Journal of Advanced Prosthodontics
    • /
    • v.4 no.2
    • /
    • pp.93-96
    • /
    • 2012
  • PURPOSE. The objective of this study was to compare the light transmittance of zirconia in different thicknesses using various light curing units. MATERIALS AND METHODS. A total of 21 disc-shaped zirconia specimens (5 mm in diameter) in different thicknesses (0.3, 0.5 and 0.8 mm) were prepared. The light transmittance of the specimens under three different light-curing units (quartz tungsten halogen, light-emitting diodes and plasma arc) was compared by using a hand-held radiometer. Statistical significance was determined using two-way ANOVA (${\alpha}$=.05). RESULTS. ANOVA revealed that thickness of zirconia and light curing unit had significant effects on light transmittance ($P$ <.001). CONCLUSION. Greater thickness of zirconia results in lower light transmittance. Light-emitting diodes light-curing units might be considered as effective as Plasma arc light-curing units or more effective than Quartz-tungsten-halogen light-curing units for polymerization of the resin-based materials.

Characteristics of polymerization in nanofiller-containing composite resins (나노필러를 포함하고 있는 복합레진의 중합특성)

  • Lee, Hee-Kyung
    • Journal of Technologic Dentistry
    • /
    • v.29 no.2
    • /
    • pp.9-15
    • /
    • 2007
  • As the development of nanotechnology, the use of composite resins which containing nanofillers becomes popular. The purpose of this study was to test the degree of polymerization of nanofillercontaining composite resins. For the study, three different nanofiller-containing composite resins and two different light-curing units were used. To evaluate the degree of polymerization, the maximum polymerization shrinkage taking place during the light curing, and the microhardness, after the light curing, were measured. As results, two light-curing units exhibited a similar emission spectrum to that of the included photoinitiator, camphorquinone. The only difference between the light-curing units were the width of the emission spectrum. Three different composite resins showed different microhardness values. Among them, Grandio showed the greatest microhardness value. However, there was less microhardness difference on the top and bottom surfaces due to the difference of the light-curing units. The maximum polymerization shrinkage values were also similar in the tested specimens regardless of the difference of the light-curing units. However, Grandio showed the least polymerization shrinkage. According to the manufacturers' data, Grandio showed the highest filler content(vol%).

  • PDF

INFLUENCE OF TIP DISTANCE ON DEGREE OF CONVERSION OF COMPOSITE RESIN IN CURING WITH VARIOUS LIGHT SOURCES (광원에 따른 조사거리의 증가가 복합레진의 중합도에 미치는 영향)

  • Kim, Sang-Bae;Park, Ho-Won
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.31 no.2
    • /
    • pp.273-279
    • /
    • 2004
  • Recently, newly developed single high-intensity LED curing lights for composite resins are claimed to have a higher intensity than previous LED curing lights and to results in optimal properties and short curing time. The purpose of this study was to determine the curing effectiveness of the curing units and to evaluate the relationship between the degree of polymerization and distance from curing light tip end to resin surface. One composite resin was tested(Filtek Z250). Thin film specimens were cured with a LED curing unit(Elipar Freelight 2, 10s), Plasma Arc curing unit(Flipo, 6s), Halogen curing light(XL3000, 20s) at four curing light tip to the resin surface(0mm, 2mm, 4mm, 6mm). Degree of conversion of composite resins were determined by a Fourier Transform Infrared Spectrometer(FTIR). From the present study, the following results were obtained. 1. In all curing units, relative light intensity was significantly decreased according to the increase of distance of light tip to the resin surface(p<0.05). LED curing units showed a higher percentile decrease in intensity than other curing units. 2. In all curing units, degree of conversion was decreased as increase of the distance but no statistically significant difference(p>0.05) except between 4mm and 6mm(p<0.05). 3. When comparing degree of conversion of light curing units at each distance(0mm, 2mm, 4mm, 6mm), LED curing light had a higher degree of conversion than plasma arc and halogen curing lights at 0, 2, 4mm(p<0.05). At 6mm, there was a no significant difference among the curing units(p>0.05).

  • PDF

Effect of light source on depth of cure and polymerization shrinkage of composites

  • Na, Joon-Sok;Oh, Won-Mann;Hwang, In-Nam
    • Proceedings of the KACD Conference
    • /
    • 2001.11a
    • /
    • pp.578.1-578
    • /
    • 2001
  • The aim of this study was to evaluate the efficiency of the recently introduced light curing units to polymerize a light curing resin composite. Four light curing units XL 3000, Optilux 500 for halogen light source, Apollo 95E for plasma arc and Easy cure for LED (blue-light Emitting Diode) were evaluated. Radiometer was used for measure the light intensity.(omitted)

  • PDF

EFFECT OF EACH LIGHT CURING UNITS ON THE MICROHARDNESS AND MICROLEAKAGE OF COMPOSITE RESIN (각각의 광조사기가 복합레진의 미세경도와 미세누출에 미치는 영향)

  • Jung, Eu-Jin;Lee, Hee-Joo;Hur, Bock
    • Restorative Dentistry and Endodontics
    • /
    • v.29 no.1
    • /
    • pp.58-67
    • /
    • 2004
  • The objectives of this study was to evaluate current visible light curing units regarding microhardness and microleakage. Fourty samples of composite resin(Z-250, 3M) were cured by different light curing units (Flipo, LOKKI; Credi II, 3M; XL 3000, 3M: Optilux 500, Demetron) in acrylic blocks. Microhardness was measured using a calibrated Vickers indenter on both top and bottom surfaces after 24 hours of storage in air at room temperature. Class V cavities were prepared on buccal and lingual surfaces of fourty extracted human molars. Each margin was on enamel and dentin/cementum. Composite resin(Z-250, 3M) was filled in cavities and cured by four different light curing units (Flipo, LOKKl; Credi II, 3M; XL 3000, 3M: Optilux 500, Demetron). The results of this syudy were as follows: Microhardness 1. Flipo showed low microhardness compared to Optilux 500, Credi II significantly in upper surface. Flipo didn't show a significant difference compared to XL 3000. 2. The microhardness resulting from curing with Flipo was lower than that of others on lower surfaces. Microleakage 1. Dentin margin showed significantly high dye penetration rate than enamel margin in all groups(p<0.05). 2. No significant differences were found on both enamel and dentin margin regarding curing units.

A CLINICAL STUDY ON THE MAINTENANCE OF LIGHT INTENSITY OF VISIBLE-LIGHT CURING MACHINES FOR THE POLYMERIZATION OF COMPOSITE RESINS (복합레진 중합용 가시광선 광중합기의 적정 광강도 유지를 위한 임상적 고찰)

  • Lee, Dong-Soo;Jeong, Tae-Sung;Kim, Shin
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.28 no.3
    • /
    • pp.363-368
    • /
    • 2001
  • It is well known that numerous factors influence the light output of curing units, but many dentists are un aware that the output of their curing lights are inadequate. This study was conducted to evaluate the light in tensity of visible-light curing units in some private dental clinics and hospital dental clinics. In order to determine the maximum light intensity of the curing units, lamps, filters and fiber optic bundles, they were replaced with new ones and light intensity was remeasured. Light intensity was measured by employing a digital radiometer (EFOS model #8000, USA). Light intensity ranged in $29\sim866mW/cm^2$ (below $150mW/cm^2$ ; 17.8%, $150\sim300mW/cm^2$ : 46.6%, above $300mW/cm^2$ ; 35.6%). The replacement of the components increased the light intensity, with maximum increases of 94.8% for lamps, 82.3% for filters, 200.8% for fiber optics and 361.5% for all three parts. According to the manufacturer of radiometer, curing light is considered as unsuitable for use with a reading of above $300mW/cm^2$ by the radiometer. Applying these criteria to the present study, 64.4% of the curing units required repair or replacement. The results of this study indicated that the light intensities of the curing units used in dental practice were lower than optimum level.

  • PDF

THE EFFECTS OF WAVELENGTH AND INTENSITY OF VISIBLE LIGHT ON THE CURING OF VISIBLE LIGHT CURED COMPOSITE RESIN (가시광선의 파장과 광도가 광중합형 복합레진의 경화에 미치는 영향)

  • Lee, Chae-Gyeong;Hur, Bok
    • Restorative Dentistry and Endodontics
    • /
    • v.14 no.1
    • /
    • pp.149-159
    • /
    • 1989
  • The purpose of this study was to assess the effects of wavelength and intensity of light curing units on the curing of composite resin. The wavelength and intensity of nine units were evaluated with Optical Multichannel Analyzer and Radiometer. Two-part split stainless steel mold with a cylindrical hole-3.0mm in diameter, 6.0mm in hgieht-was prepared. After placing a Mylar strip between two parts, 100 specimens were made by inserting each of four composite resins into the mold and irradiating for 20 seconds with five light units alternatively. The curing depths were measured by scraping method and evaluated by two-way ANOVA. And Vicker's hardness measurements were made on the longitudinally sectioned surface at 0.5mm interval. The results were as follows: 1. Visilux 2 showed a narrow spectral band within the effective wavelength in initiating polymerization and the highest intensity. Translux showed the diffuse spectrum of wavelength and the lower light intensity. 2. Visilux 2 showed the highest curing effect in any composite resin and then followed by Optilux, Efos 35, Heliomat and Translux. (p < 0.01) 3. Durafill showed the deepest curing depth in any light unit and then followed by Bisfil M, Silux and Heliosit. (p < 0.01). 4. Maximum hardness values showed 0.1mm and 0.5mm under top surface and then gradually decreased with depth.

  • PDF

Comparison of the bonding strengths of second- and third-generation light-emitting diode light-curing units

  • Lee, Hee-Min;Kim, Sang-Cheol;Kang, Kyung-Hwa;Chang, Na-Young
    • The korean journal of orthodontics
    • /
    • v.46 no.6
    • /
    • pp.364-371
    • /
    • 2016
  • Objective: With the introduction of third-generation light-emitting diodes (LEDs) in dental practice, it is necessary to compare their bracket-bonding effects, safety, and efficacy with those of the second-generation units. Methods: In this study, 80 extracted human premolars were randomly divided into eight groups of 10 samples each. Metal or polycrystalline ceramic brackets were bonded on the teeth using second- or third-generation LED light-curing units (LCUs), according to the manufacturers' instructions. The shear bond strengths were measured using the universal testing machine, and the adhesive remnant index (ARI) was scored by assessing the residual resin on the surfaces of debonded teeth using a scanning electron microscope. In addition, curing times were also measured. Results: The shear bond strengths in all experimental groups were higher than the acceptable clinical shear bond strengths, regardless of the curing unit used. In both LED LCU groups, all ceramic bracket groups showed significantly higher shear bond strengths than did the metal bracket groups except the plasma emulation group which showed no significant difference. When comparing units within the same bracket type, no differences in shear bond strength were observed between the second- and third-generation unit groups. Additionally, no significant differences were observed among the groups for the ARI. Conclusions: The bracket-bonding effects and ARIs of second- and third-generation LED LCUs showed few differences, and most were without statistical significance; however, the curing time was shorter for the second-generation unit.

Effect of infection control barrier thickness on light curing units (감염 조절용 차단막의 두께가 광중합기의 중합광에 미치는 영향)

  • Chang, Hoon-Sang;Lee, Seok-Ryun;Hong, Sung-Ok;Ryu, Hyun-Wook;Song, Chang-Kyu;Min, Kyung-San
    • Restorative Dentistry and Endodontics
    • /
    • v.35 no.5
    • /
    • pp.368-373
    • /
    • 2010
  • Objectives: This study investigated the effect of infection control barrier thickness on power density, wavelength, and light diffusion of light curing units. Materials and Methods: Infection control barrier (Cleanwrap) in one-fold, two-fold, four-fold, and eightfold, and a halogen light curing unit (Optilux 360) and a light emitting diode (LED) light curing unit (Elipar FreeLight 2) were used in this study. Power density of light curing units with infection control barriers covering the fiberoptic bundle was measured with a hand held dental radiometer (Cure Rite). Wavelength of light curing units fixed on a custom made optical breadboard was measured with a portable spectroradiometer (CS-1000). Light diffusion of light curing units was photographed with DSLR (Nikon D70s) as above. Results: Power density decreased significantly as the layer thickness of the infection control barrier increased, except the one-fold and two-fold in halogen light curing unit. Especially, when the barrier was four-fold and more in the halogen light curing unit, the decrease of power density was more prominent. The wavelength of light curing units was not affected by the barriers and almost no change was detected in the peak wavelength. Light diffusion of LED light curing unit was not affected by barriers, however, halogen light curing unit showed decrease in light diffusion angle when the barrier was four-fold and statistically different decrease when the barrier was eight-fold (p < 0.05). Conclusions: It could be assumed that the infection control barriers should be used as two-fold rather than one-fold to prevent tearing of the barriers and subsequent cross contamination between the patients.

A STUDY ON THE TENSILE BOND STRENGTH TO TOOTH STRUCTURE OF TOOTH COLORED MATERIALS ACCORDING TO FILLING METHODS AND LIGHT CURING UNITS (심미수복재의 수복방법과 광조사기기에 따른 치질과의 인장결합강도에 관한 연구)

  • Hwang, Ho-Keel;Kim, Young-Kwan;Oh, Haeng-Jin
    • Restorative Dentistry and Endodontics
    • /
    • v.21 no.2
    • /
    • pp.652-663
    • /
    • 1996
  • The purpose of this study was to evaluate the tensile bond strength to tooth structure of composite resin and glass ionomer cement according to filling methods and light curing units. In this study, two class V cavities were prepared on the buccal surface of each tooth of 140 extracted human molars, and they were randomly assigned into 3 experimental groups with 40 teeth and control group with 20 teeth. And then, each experimental groups subdivided into 2 groups(A,B) according to light curing units. The cavities of each group were filled with the CLEARFIL FII self curing resin(Control Group), Z-100 light curing resin(Group 1), Vitremer$^{TM}$ light curing glass ionomer cement(Group 2) and Z-100 light curing resin over the Vitrebond$^{TM}$ liner(Group 3). And subdivided A Group used Argon Laser(SPECTRUM$^{TM}$, U.S.A.), B Group used XL 1,000 curing light (3M, U.S.A.). The specimens underwent temperature changed from $5^{\circ}C$ to $55^{\circ}C$ five hundred times. After thermocycling, specimens were stored in 100% relative humidity at $37^{\circ}C$ for 24 hours. And then, the tensile bond strength of specimens were calculated with Universal Testing Machine(AGS-100A, Japan). The results were as follows : 1. Among the experimental groups, the group 2-B showed the highest tensile bond strength ($18.89{\pm}7.80$) and the group 1-A showed the lowest tensile bond strength ($11.68{\pm}2.28$). There was significant difference between group 2-B and group 1-A(p<0.01). 2. Between the light curing units, the XL 1,000 unit showed higher tensile bond strength ($16.63{\pm}3.20$) than that of the Argon Laser unit ($13.73{\pm}2.30$). There was significant difference between XL 1,000 and Argon Laser(p<0.01). 3. About filling methods and materials, the group 2 showed the highest tensile bond strength ($17.56{\pm}1.89$) and the group 1 showed the lowest tensile bond strength($13.03{\pm}1.90$). There was significant difference between group 2 and group 1,3(p<0.01). In conclusion, the results showed that the glass-ionomer cement that cured by XL 1,000 light curing unit demonstrated significantly higher tensile bond strength than other curing unit and filling methods.

  • PDF