• Title/Summary/Keyword: Light car

Search Result 309, Processing Time 0.025 seconds

Light-Weight Design of Maglev Car-Body Frame Using Response Surface Approximation (반응면 근사를 이용한 자기부상열차 차체 프레임 경량화 설계)

  • Bang, Je-Sung;Han, Jeong-Woo;Lee, Jong-Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.11
    • /
    • pp.1297-1308
    • /
    • 2011
  • The light-weight design of UTM (Urban Transit Maglev)-02 car-body frames are performed, based on initial configuration. The thicknesses of fourteen sub-structures are defined as design variables and the loading condition is considered according to weight of sub-structures, electronic and pneumatic modules and passengers. For efficient and robust process of design optimization, objective function and constraints are approximated by response surface approximation. Structural analysis is performed at some sampling points to construct the approximated objective function and constraints composed of design variables. Design space is changed to find many optimal candidates and best optimal design can be found eventually. The Matlab Optimization Toolbox is used to find optimal value and sensitivity analysis about each design variable is also performed.

A comparison between the dynamic and static stiffness of ballasted track: A field study

  • Mosayeb, Seyed-Ali;Zakeri, Jabbar-Ali;Esmaeili, Morteza
    • Geomechanics and Engineering
    • /
    • v.11 no.6
    • /
    • pp.757-769
    • /
    • 2016
  • Rail support modulus is an important parameter for analysis and design of ballasted railway tracks. One of the challenges in track stiffness assessment is its dynamic nature under the moving trains which differs it from the case of standing trains. So the present study is allocated to establish a relation between the dynamic and static stiffness of ballasted tracks via field measurements. In this regard, two different sites of ballasted tracks with wooden and concrete sleepers were selected and the static and dynamic stiffness were measured based on Talbot - Wasiutynski method. In this matter, the selected tracks were loaded by two heavy and light car bodies for standing and moving conditions and consequently the deflection basins were evaluated in both sites. Knowing the deflection basins respect to light and heavy loading conditions, both of static and dynamic stiffness values were extracted. Finally two definite relations were obtained for ballasted tracks with wooded and concrete sleepers.

A Study on the Safety for Pedestrians Waiting for Signal (보행신호를 대기하는 보행자의 안전에 관한 연구)

  • Kim, Hansol;Baek, Seryong;Choi, Yongsoon;Yoon, Junkyu;Lim, Jonghan
    • Journal of Auto-vehicle Safety Association
    • /
    • v.13 no.3
    • /
    • pp.41-46
    • /
    • 2021
  • The number of big traffic accident cases of pedestrian death appeared to be minor, however compared to death rate in car to car accidents is very high and quite a few of the pedestrian death rates among all traffic accidents are counted to be almost 40%. Previous pedestrian safety studies were mostly aimed at reducing the degree of pedestrian injuries from a vehicle to pedestrian collision, and less at preventing a collision itself. This research was conducted with a method of using road facilities to prevent vehicles from rushing into the sidewalk. This research used one of the collision analyzing programs, called PC-Crash to simulate the vehicle rushing into the sidewalk. Based on the program, it could derive an optimal safe zone location where the pedestrian can wait for the pedestrian light safely. Also, changing road facilities such as pedestrian light pillars or signal controllers can widen 440% compared to the present safe zone. Accordingly, researchers have to consider a method to analyze and apply pedestrian safe zones along with road facilities location when designing a road.

Importance of Fundamental Manufacturing Technology in the Automotive Industry and the State of the Art Welding and Joining Technology (자동차 산업에서 뿌리기술의 중요성 및 최신 용접/접합 기술)

  • Chang, InSung;Cho, YongJoon;Park, HyunSung;So, DeugYoung
    • Journal of Welding and Joining
    • /
    • v.34 no.1
    • /
    • pp.21-25
    • /
    • 2016
  • The automotive vehicle is made through the following processes such as press shop, welding shop, paint shop, and general assembly. Among them, the most important process to determine the quality of the car body is the welding process. Generally, more than 400 pressed panels are welded to make BIW (Body In White) by using the RSW (Resistance Spot Welding) and GMAW (Gas Metal Arc Welding). Recently, as the needs of light-weight material due to the $CO_2$ emission issue and fuel efficiency, new joining technologies for aluminum, CFRP (Carbon Fiber Reinforced Plastic) and etc. are needed. Aluminum parts are assembled by the spot welding, clinching, and SPR (Self Piercing Rivet) and friction stir welding process. Structural adhesive boning is another main joining method for light-weight materials. For example, one piece aluminum shock absorber housing part is made by die casting process and is assembled with conventional steel part by SPR and adhesive bond. Another way to reduce the amount of the car body weight is to use AHSS (Advanced High Strength Steel) panel including hot stamping boron alloyed steel. As the new materials are introduced to car body joining, productivity and quality have become more critical. Productivity improvement technology and adaptive welding control are essential technology for the future manufacturing environment.

Study on the Characteristics of Bus Traffic Accidents by Types Using the Decision Tree (의사결정나무를 활용한 업종별 버스 교통사고 특성 연구)

  • Park, Wonil;Kim, Kyung Hyun;Han, Eum;Park, Sangmin;Yun, Ilsoo
    • International Journal of Highway Engineering
    • /
    • v.18 no.5
    • /
    • pp.105-115
    • /
    • 2016
  • PURPOSES : This study was initiated to analyze the characteristics of bus traffic accidents, by bus types, using the decision tree in order to establish customized safety alternatives by bus types, including the intra-city bus, rural area bus, and inter-city bus. METHODS : In this study, the major elements involved in bus traffic accidents were identified using decision trees and CHAID algorithm. The decision tree was used to identify the characteristics of major elements influencing bus traffic accidents. In addition, the CHAID algorithm was applied to branch the decision trees. RESULTS : The number of casualties and severe injuries are high in bus accidents involving pedestrians, bicycles, motorcycles, etc. In the case of light injury caused by bus accidents, different results are found. In the case of intra-city bus accidents, the probability of light injury is of 77.2% when boarding a non-owned car and breaching of duty to drive safely are involved. In the case of rural area bus accidents, the elements showing the highest probability of light injury are boarding an owned car, vehicle-to-vehicle accidents, and breaching of duty to drive safely. In the case of intra-city bus accidents, boarding owned car, streets, and vehicle-to-vehicle accidents work as the critical elements. CONCLUSIONS : In this study, the bus accident data were categorized by bus types, and then the influential elements were identified using decision trees. As a result, the characteristics of bus accidents were found to be different depending on bus types. The findings in this study are expected to be utilized in establishing effective alternatives to reduce bus accidents.

Study on a Smart Cane for the Visually Impaired utilizing ESP32-CAM for Enhanced Safety (안전성 강화를 위한 ESP32-CAM을 활용한 시각장애인용 스마트지팡이에 대한 연구)

  • Doo-Hyeon-Hong;Jong-Hwan-Lim;Jun-Sun-Yu;Seung-Hyeop-Beak;Jae-Wook Kim
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.6
    • /
    • pp.1379-1386
    • /
    • 2023
  • In this paper, research was conducted to prevent various safety accidents that may occur from infant carriages carrying children and to make the use of infant carriages easier. In order to prevent the baby car from running without protection, a brake function is installed on the baby car wheels using a pressure sensor and a servo motor. Then, a pressure sensor and LCD are used to determine whether the seat belt is fastened to prevent the child from falling out of the baby car. In addition, it was designed to use LCD and LED to turn on a warning light when the temperature and humidity exceed a certain level, so that infants can be in a comfortable environment when using the baby car.

Study on the Development of High-efficiency, Long-life LED Fog Lamps for the Used Car Market

  • Park, Sang Jun;Lee, Young Lim
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.4
    • /
    • pp.201-206
    • /
    • 2014
  • LED lighting,considered to be a new growth industry, has attracted a great deal of attention due to its higher illumination and longer life time than existing light sources. In this study, high-efficiency and long-life LED fog lamps for automobiles were developed, which can substitute the existing 27 W halogen fog lamps for a used car market. For this purpose, the number of LED modules, the body, heat sink, and the output of the fog lamp were first optimized through a numerical analysis. Then, a 10 W-class LED fog lamp was prototyped based on the optimized numerical model, and the performance of the fog lamp was successfully verified through the experiments.

Experimental Study on the Improvement of Running Stability for Freight Car (화물수송용 철도차량의 주행안정성 향상에 관한 실험적 연구)

  • Haam, Y.S.;Oh, T.Y.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.888-893
    • /
    • 2000
  • This experimental study is the improvement of running stability for freight car. KNR (Korean National Railroad)'s conventional wagons, light bodies running on Barber style bogies with 5-1/$2{\times}10$ journals, would be considered fundamentally to be a most difficult car to control above 100km/h. From the results of experiment, to permit high speed operation safely, was realized with the resilient side bearing. Also, equipped with resilient side bearing, and elastowedge friction elements to eliminate bolster wedge pocket wear, KNR's wagons can be secure the running stability with lower maintenance requirements than current experience.

  • PDF

Weight-reduction Prediction for the Conceptual Design of Carbody with Shell Type Sections Using the Material Substitution Technique (쉘형 차체 구조의 소재대체 개념설계에 대한 경량화 예측 기법)

  • Koo, Jeong-Seo;Cho, Hyun-Jik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.4
    • /
    • pp.17-26
    • /
    • 2007
  • In this paper, a theoretical approach is studied to predict structural performances and weight reduction rates of a car-body with shell type sections in case that its materials have to be substituted. For the material substitution design of a car-body, bending, axial and twisting deformations are considered under constant stiffness and strength conditions, which utilize some new indices derived from a structural performance point of view. The developed indices to measure the weight reduction by the material substitution give good guidelines on conceptual design of car-bodies.

A Study on Warm Forming Technology of Car Body Reinforced Dash Using Magnesium Alloy Sheet (마그네슘 합금 판재를 활용한 차체 Reinforced Dash 부품 온간성형 공정 연구)

  • Park, Dong Hwan;Tak, Yun Hak
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.5
    • /
    • pp.519-524
    • /
    • 2014
  • The use of light weight magnesium alloy offers significant potential towards improvement of the automotive fuel efficiency. However, the application of formed magnesium alloy components in auto-body structures is restricted due to the low formability at room temperature and lack of knowledge for processing magnesium alloys at elevated temperatures. In this study, a warm tensile test of magnesium alloys was performed to measure tensile strength and elongation. An improvement in formability was confirmed at increased temperatures above about $250^{\circ}C$. Car body warm forming technology was conducted for forming forming reinforced dash components of the magnesium alloy AZ31B sheet at elevated temperatures.