• Title/Summary/Keyword: Light buoy

Search Result 29, Processing Time 0.028 seconds

Numerical Study on the Improvement of the Motion Performance of a Light Buoy

  • Son, Bo-Hun;Jeong, Se-Min
    • Journal of Ocean Engineering and Technology
    • /
    • v.34 no.2
    • /
    • pp.66-76
    • /
    • 2020
  • A light buoy is equipped with lighting functions and navigation signs. Its shape and colors indicate the route to vessels sailing nearby in the daytime, with its lights providing this information at night. It also plays a role in notifying the presence of obstacles such as reefs and shallows. When a light buoy operates in the ocean, the visibility and angle of light from the lantern installed on the buoy changes, which may cause them to function improperly. Therefore, it is necessary for the buoy to have stable and minimal motions under given environmental conditions, mainly waves. In this study, motion analyses for a newly developed lightweight light-buoy in waves were performed to predict the motion performance and determine the effect of the developed appendages for improving the motion performance. First, free decay tests, including benchmark cases, were performed using computational fluid dynamics (CFD) to estimate the viscous damping coefficients, which could not be obtained using potential-based simulations. A comparison was made of the results from potential-based simulations with and without considering viscous damping coefficients, which were estimated using CFD. It was confirmed that the pitch and heave motions of the buoy became smaller when the developed appendages were adopted.

Research into The Future Development of the Hybrid System for Buoy

  • Lee, Ji-Young;Kim, Jong-Do;Lee, Jong-Ho;Lee, Jin-Yeol;Oh, Jin-Seok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.5
    • /
    • pp.583-591
    • /
    • 2007
  • This paper reports the performance of a 150W PV-wave hybrid system with battery storage in buoy. This system was originally designed to meet a new hybrid ower system for buoy in Korea. In the case or lighted buoys and lighthouses, a light failure alarm system of wireless radio is attached so that light failures are immediately notified to the office. At lighthouse offshore fixed lights and light buoys where commercial electricity is not available, the power source depends on solar system and batteries. This power system has a various problems. Therefore energy derived from the sunshine, wind and waves has been used as the energy source lot aids to navigation. Recently a hybrid system of combining the solar, wind and the wave generator is a favorable system lot the ocean facilities like lighthouse and buoy. The hybrid system in this paper is intended for variable DC load like light, communication system in the buoy and includes a PV-wane generation system and battery. This is composed a high efficiency charging algorithm, switching converter and controller. This paper includes discussion on system reliability, power quality, and effects of hybrid system in the buoy. Simulation and experimental results show excellent performance.

Development for auto lightening buoy system using solenoid (솔레노이드 장치를 이용한 양식용 부자 LED 전원공급 시스템 개발)

  • CHA, Bong-Jin;BAE, Bong-Sung;KIM, Hyun-Young;CHO, Sam-Kwang;LEE, Gun-Ho
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.52 no.1
    • /
    • pp.17-23
    • /
    • 2016
  • This study investigates the development of an automatic lightening buoy that can indicate an aquaculture cage at night or in rough weather. The energy for the light is generated by the linear motion of a magnet along with a coil inside the buoy as the waves cause the buoy to oscillate up and down. The principle of the magnet motion is different between the magnet and body of the buoy because the movement of the latter is dependent on the surface wave, while the former is affected by the damper. To obtain a quantitative performance of the buoy, the voltage as well as up and down motion produced by several waves were measured in the wave tank. A shorter wave period, i.e., faster motion, of the magnet produced a brighter light. It is expected that this study can aid in deciding the optimum design of a buoy capable of producing a bright light at any aquaculture site affected by sea or fresh water waves.

A Study on the Sea Areas Dynamic Stability of LL-26(M) Light Buoy (LL-26(M) 등부표의 해역별 동적안정성에 관한 연구)

  • Moon, Beom-Sik;Gug, Seung-Gi;Kim, Tae-Goun
    • Journal of Navigation and Port Research
    • /
    • v.44 no.3
    • /
    • pp.166-173
    • /
    • 2020
  • AtoN Accident causes navigation dangerous to ships and reduces the credibility of aids to navigation. The most light buoys on the sea have the highest accident rate from the influence of sea weather such as wind, current, and waves. However, in Korea, despite the different sea weather conditions in each sea area, in calculating the dynamic stability of the light buoy, there is a problem that only limit value conditions are applied to all sea areas. Thus, the purpose of this study was to analyze the dynamic stability of the LL-26(M) light buoy, the most installed buoy of its kind on the sea and suggest a stable operation plan for the LL-26(M) light buoy. To achieve this, after analyzing the weather for each sea area of the previous study related to the light buoy, the dynamic stability (inclination angle) was estimated by applying to the representative light buoys of each sea area wherein the number of accidents caused by sea weather was high. As a result of this study, the inclination angle of LL-26(M) light buoy for each sea area was different. That is, the inclination angle caused by winds was 10.329°-36.868°, the inclination angle caused by currents was 0.123°-18.834° and the inclination angle caused by waves was 4.777°-20.695°. The results of study can be used as basic data useful for installation standards for each sea area for stable operation of the LL-26(M) light buoy.

The User Analysis for Visual Range and Arrangement of Light-buoy on the Channel of the Domestic Trade-port (국내 무역항 항로의 등부표 시인거리와 배치에 관한 이용자 분석)

  • Kim, Jung-Hoon;Gug, Seung-Gi;Yun, Jong-Hwui;Jeong, Tae-Gweon
    • Journal of Navigation and Port Research
    • /
    • v.32 no.5
    • /
    • pp.327-332
    • /
    • 2008
  • This paper analyzed the visual range and arrangement of light buoy on navigation officers as the primary material to establish the standard of optimal arrangement of light buoy on the channel of the domestic trade-port. About $30{\sim}150$ questionnaires by port were distributed according to the scale of trade-ports and then Effective total 356 copies were used in analysis. The distance, $2{\sim}4$mile, occupied the highest percentage 55.0% as the visual range with naked eyes at the daytime in bright weather. At the arrangement way of light buoy the both sides buoy method showed high in the preference 62.1% among the respondents. The preferred interval between sequence buoys was averagely 1.09mile. Also, the preferred number of light buoy was two in the preference 40.6% among them to cognize without binoculars.

A Study on the Separated Position of Floating Light Buoy Equipment with AtoN AIS and RTU (항로표지용 AIS 및 RTU가 부착된 부유식 등부표의 이출위치 연구)

  • Moon, Beom-Sik;Yoo, Yun-Ja;Kim, Min-Ji;Kim, Tae-Goun
    • Journal of Navigation and Port Research
    • /
    • v.46 no.4
    • /
    • pp.313-320
    • /
    • 2022
  • The light buoy installed on the sea is always flexible, because it is affected by the weather as well as passing vessels. The position of the light buoy can be cached through the AtoN AIS (Automatic Identification System) and RTU (Remote Terminal Unit). This study analyzed the position data of the light buoys for the last five years (2017-2021), as well as the distribution of the light buoys within the maximum separated position. As a result, there was a basic error of 17.9% in the position data. Additionally, the separated position error of 197 light buoys to be analyzed was 70.64%, and the AtoN RTU was worse than the AtoN AIS by equipment. On the other hand, as a result of the plotting the position data of the light buoy, it was classified into four types. The most common percussion center type, the percussion center dichotomous type in which the position is divided into two zones based on the chimney, the central movement type with a fluctuating center, and the drag type, in which the position is deviated from the center for a certain period. Except for Type-1, the type was determined according to the position at which the light buoy was installed. This study is the first to analyze the position data of the light buoy, and it is expected that it will contribute to the improvement of the quality of the position data of the light buoy.

A Study on the Optimal Waterway System of Port (港灣의 最適入出港線路 시스템에 關한 硏究)

  • 구자윤;우병구
    • Journal of the Korean Institute of Navigation
    • /
    • v.16 no.1
    • /
    • pp.65-75
    • /
    • 1992
  • The Waterway System for the Very Large Ships is One of the Important System connected between Marine Transport System and Exclusive Terminal. This study analyzed the Turning Configurations and Placement of Fairway Buoys in Waterway at the Port of Kwangyang to make Optimal Suggestion of for Ship's Safe Navigation. The following Conclusions are drawn : 1) In Area Section A, Starboard hand Buoy No14 should be changed its Location and Light Rhythms, and Buoy Nos.13 '||'&'||' 16 are required their Light Rhythms to be changed. 2) Especially in Area Section B located before the Turning Basin, The Location and Light Rhythms of Nos.20 '||'&'||' 22 buoys at Starboard Hand should be changed, Port Hand No.21 also should be done, and East Cardinal Buoy located between Nos.21and 23 should be changed its Light Rhythms, or removed if possible. 3) Buoy no.19 of Lateral Port Hand in Section B should be changed "Preferred Channel to Startboard" to distinguish Main Channel from Secondary One.

  • PDF

Experimental Study for Wave Energy Convertor using Floating Light Buoy (등부표를 이용한 파력발전에 관한 실험적 연구)

  • Oh, Nam Sun;Jeong, Shin Taek;Ko, Dong Hui
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.27 no.1
    • /
    • pp.50-55
    • /
    • 2015
  • In this paper, wave energy convertors which convert incident wave energy into electric power using floating light buoy are investigated. One-tenth models of a floating light buoy, straight line and seesaw type electric power plant are manufactured and tested in wave flume. In these systems, we measure the horizontal and vertical slope, generated current and power of buoy with different wave heights and periods. This was confirmed the capability of getting electric power, then we suggest further works to get more efficiency.

Mechanism Development and Position Control of Smart Buoy Robot

  • Park, Hwi-Geun;Kim, Hyun-Sik
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.4
    • /
    • pp.305-312
    • /
    • 2021
  • There is a gradual increase in the need for energy charging in marine environments because of energy limitations experienced by electric ships and marine robots. Buoys are considered potential energy charging systems, but there are several challenges, which include the need to maintain a fixed position and avoid hazards, dock with ships and robots in order to charge them, be robust to actions by birds, ships, and robots. To solve these problems, this study proposes a smart buoy robot that has multiple thrusters, multiple docking and charging parts, a bird spike, a radar reflector, a light, a camera, and an anchor, and its mechanism is developed. To verify the performance of the smart buoy robot, the position control under disturbance due to wave currents and functional tests such as docking, charging, lighting, and anchoring are performed. Experimental results show that the smart buoy robot can operate under disturbances and is functionally effective. Therefore, the smart buoy robot is suitable as an energy charging system and has potential in realistic applications.

A Study on Data Clustering of Light Buoy Using DBSCAN(I) (DBSCAN을 이용한 등부표 위치 데이터 Clustering 연구(I))

  • Gwang-Young Choi;So-Ra Kim;Sang-Won Park;Chae-Uk Song
    • Journal of Navigation and Port Research
    • /
    • v.47 no.4
    • /
    • pp.231-238
    • /
    • 2023
  • The position of a light buoy is always flexible due to the influence of external forces such as tides and wind. The position can be checked through AIS (Automatic Identification System) or RTU (Remote Terminal Unit) for AtoN. As a result of analyzing the position data for the last five years (2017-2021) of a light buoy, the average position error was 15.4%. It is necessary to detect position error data and obtain refined position data to prevent navigation safety accidents and management. This study aimed to detect position error data and obtain refined position data by DBSCAN Clustering position data obtained through AIS or RTU for AtoN. For this purpose, 21 position data of Gunsan Port No. 1 light buoy where RTU was installed among western waters with the most position errors were DBSCAN clustered using Python library. The minPts required for DBSCAN Clustering applied the value commonly used for two-dimensional data. Epsilon was calculated and its value was applied using the k-NN (nearest neighbor) algorithm. As a result of DBSCAN Clustering, position error data that did not satisfy minPts and epsilon were detected and refined position data were acquired. This study can be used as asic data for obtaining reliable position data of a light buoy installed with AIS or RTU for AtoN. It is expected to be of great help in preventing navigation safety accidents.