• Title/Summary/Keyword: Light Pollution

Search Result 378, Processing Time 0.031 seconds

Lichen as Bioindicators: Assessing their Response to Heavy Metal Pollution in Their Native Ecosystem

  • Jiho Yang;Soon-Ok Oh;Jae-Seoun Hur
    • Mycobiology
    • /
    • v.51 no.5
    • /
    • pp.343-353
    • /
    • 2023
  • Lichens play crucial roles in the ecosystems, contributing to soil formation and nutrient cycling, and being used in biomonitoring efforts to assess the sustainability of ecosystems including air quality. Previous studies on heavy metal accumulation in lichens have mostly relied on manipulated environments, such as transplanted lichens, leaving us with a dearth of research on how lichens physiologically respond to heavy metal exposure in their natural habitats. To fill this knowledge gap, we investigated lichens from two of South Korea's geographically distant regions, Gangwon Province and Jeju Island, and examined whether difference in ambient heavy metal concentrations could be detected through physiological variables, including chlorophyll damage, lipid oxidation, and protein content. The physiological variables of lichens in response to heavy metals differed according to the collection area: Arsenic exerted a significant impact on chlorophyll degradation and protein content. The degree of fatty acid oxidation in lichens was associated with increased Cu concentrations. Our research highlights the value of lichens as a bioindicator, as we found that even small variations in ambient heavy metal concentrations can be detected in natural lichens. Furthermore, our study sheds light on which physiology variables that can be used as indicators of specific heavy metals, underscoring the potential of lichens for future ecology studies.

Comparative on Recovery Efficiency of Spilled Oil by Disk Materials (디스크 소재별 유회수 성능 비교)

  • Jang Duck-Jong;Na Son-Cheol
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2005.11a
    • /
    • pp.165-170
    • /
    • 2005
  • A basic study for the development of a disk type oil skimmer for a tank lorry, compares via experiments to the oil recovery differences by material between the existing oil skimmer disk and several discs which oil adhesion are possible. The experiment results in this study are summarized as follows: In all the disks, the mass of recovery of bunker-A oil was greater than light oil. In light oil, there was nearly no differences in the mass of oil recovery by disk material, but in the case of bunker A oil, recovery efficiency showed big differences depending on the disk materials. For light oil, the differences in the mass of oil recovery per unit of operation time from the initial time zone were hardly shown. However, the mass of recovery of bunker-A oil linearly increased from the initial operation time in all the disks and the increase shaped a slow moving trend as time went on; therefore, the mass of oil recovery per unit of operation time showed differences depending on time. This result shows that oil viscosity has an effect on the disk recovery efficiency. When comparing the mass of pure oil recovery and the mass of water recovery in the total mass of recovery by bunker-A oil, there was no difference in the mass of oil recovery between the window-aluminum material disk and the disks consisting of other materials, but the mass of water recovery of the former was relatively very small. This shows the most ideal result in view of oil recovery efficiency that considers the mass of water recovery. In conclusion, it was found that aluminum is the most advantageous as the material for tank lorry oil skimmer disk.

  • PDF

Development of an Imaging-DOAS System for 2-D Remote Sensing of Atmospheric Gases (대기가스오염물질의 이차원 원격 모니터링을 위한 Imaging-DOAS 개발)

  • Lee, Han-Lim;Lee, Chul-Kyu;Jung, Jin-Sang;Park, Jeong-Eun;Kim, Young-Joon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.2
    • /
    • pp.150-157
    • /
    • 2006
  • Spatially resolved remote identification and quantification of trace gases in the atmosphere is desirable in various fields of scientific research as well as in public security and industrial contexts. Environmental observations investigating causes, extent md consequences of air pollution are of fundamental interest. We present an Imaging-DOAS system, a ground based remote sensing instrument that allows spatially resolved mapping of atmospheric trace gases by a differential optical absorption spectroscopy(DOAS) with sun scattered light as the light source. A passive DOAS technique permits the identification and quantification of various gases, e.g., $NO_2,\;SO_2,\;and\;CH_2O$, from their differential absorption structures with high sensitivity. The Imaging-DOAS system consists of a scanning mirror, a focusing lens, a spectrometer, a 2-D CCD, ad the integral control software. An imaging spectrometer simultaneously acquires spectral information on the incident light in one spatial dimension(column) and sequentially scans the next spatial dimension with a motorized scanning mirror. The structure of the signal acquisition system is described in detail and the evaluation method is also briefly discussed. Applications of imaging of the $NO_2$ contents in the exhaust plumes from a power plant are presented.

TiO2-catalytic UV-LED Photo-oxidation of Cyanide Contained in Mine Wastewater (광산폐수 내 시안 제거를 위한 TiO2와 UV-LED를 이용한 광촉매 산화)

  • Kim, Seong Hee;Lee, Sang-Woo;Cho, Hyen Goo;Kim, Young-Ho;Kim, Soon-Oh
    • Journal of the Mineralogical Society of Korea
    • /
    • v.27 no.4
    • /
    • pp.223-233
    • /
    • 2014
  • Cyanidation method has been used to extract high-purity gold and silver in mining industry. Such mining activities have used a large amount of cyanide, and the mine wastewater contained a high level of cyanide has brought about pollution of surrounding aqueous environments. This research was initiated to study $TiO_2$-catalytic UV-LED photo-oxidation to remove cyanide from the mine wastewater. UV lamp has been generally used as a light source in conventional photo-oxidation so far, but it shows numerous drawbacks. For this reason, this study focused on the evaluation of applicability of UV-LED as an alternative light source in cyanide photo-oxidation process. Three types of $TiO_2$ photo-catalyst were compared in terms of performance of photo-oxidation of cyanide, and the results show that Degussa P25 was the most efficient. In addition, four types of UV-LED were tested to compare their efficiencies of cyanide photo-oxidation, and their efficacy was increased in the order of 365 nm lamp-type > 365 nm can-type > 280 nm can-type > 420 nm lamp-type. Not only did this study demonstrate that UV-LED can be used in the photo-oxidation of cyanide as an alternative light source of UV lamp, but also confirmed that the performance of photo-oxidation was significantly influenced by the type of $TiO_2$ catalysts.

Effects of Long-term Exposure to Black Carbon Particles on Growth and Gas Exchange Rates of Fagus crenata, Castanopsis sieboldii, Larix kaempferi and Cryptomeria japonica Seedlings

  • Yamaguchi, Masahiro;Otani, Yoko;Takeda, Kenta;Lenggoro, I. Wuled;Ishida, Atsushi;Yazaki, Kenichi;Noguchi, Kyotaro;Sase, Hiroyuki;Murao, Naoto;Nakaba, Satoshi;Yamane, Kenichi;Kuroda, Katsushi;Sano, Yuzou;Funada, Ryo;Izuta, Takeshi
    • Asian Journal of Atmospheric Environment
    • /
    • v.6 no.4
    • /
    • pp.259-267
    • /
    • 2012
  • To clarify the effects of black carbon (BC) particles on growth and gas exchange rates of Asian forest tree species, the seedlings of Fagus crenata, Castanopsis sieboldii, Larix kaempferi and Cryptomeria japonica were exposed to BC particles with sub-micron size for two growing seasons from 1 June 2009 to 11 November 2010. The BC particles deposited after the exposure to BC were observed on the foliar surface of the 4 tree species. At the end of the experiment, the amount of BC accumulated on the foliar surface after the exposure to BC aerosols were 0.13, 0.69, 0.32 and 0.58 mg C $m^{-2}$ total leaf area in F. crenata, C. sieboldii, L. kaempferi and C. japonica seedlings, respectively. In August 2010, the exposure to BC particles did not significantly affect net photosynthetic rate under any light intensity, stomatal diffusive conductance to water vapour ($g_s$), stomatal limitation of photosynthesis, response of $g_s$ to increase in vapour pressure deficit and leaf temperature under light saturated condition in the leaves or needles of the seedlings. These results suggest that the BC particles deposited on the foliar surface did not reduce net photosynthesis by shading, did not increase leaf temperature by absorption of irradiation light, and did not induce plugging of stomata in the leaves or needles of the seedlings. There were no significant effects of BC particles on the increments of plant height and stem base diameter during the experimental period and the whole-plant dry mass at the end of the experiment. These results indicate that the exposure to BC particles with sub-micron size for two growing seasons did not significantly affect the growth and leaf or needle gas exchange rates of F. crenata, C. sieboldii, L. kaempferi and C. japonica seedlings.

Use of Light Emitting Diode for Enhanced Activity of Sulfate Reducing Bacteria in Mine Drainage Treatment Process Under Extreme Cold (혹한기 광산배수 처리 공정 내 황산염 환원 박테리아의 활성 증진을 위한 발광다이오드의 이용 제안)

  • Choi, Yoojin;Choi, Yeon Woo;Lee, An-na;Kim, Kyoung-Woong
    • Economic and Environmental Geology
    • /
    • v.50 no.3
    • /
    • pp.251-256
    • /
    • 2017
  • This study presents measures to enhance the efficiency of Successive Alkalinity Producing Systems(SAPS), a natural biological purification method that prevents environmental pollution arising from the release of Acid Mine Drainage(AMD) from abandoned mines into rivers and groundwater. The treatment of AMD using SAPS is based on biological processing technology that mostly involves sulfate reducing bacteria(SRB). It has been proven effective in real-world applications, and has been employed in various projects on the purification of AMD. However, seasonal decrease in temperature leads to a deterioration in the efficiency of the process because sulfate-reducing activity is almost non-existent during cold winters and early spring even if SRB is able to survive. Against this backdrop, this study presents measures to enhance the activity of the SRB of the organic layer by integrating light emitting diode(LED)s in SAPS and to maintain the active temperature using LEDs in cold winters. Given that mine drainage facilities are located in areas where power cannot be easily supplied, solar cell modules are proposed as the main power source for LEDs. By conducting further research based on the present study, it will be possible to enhance the efficiency of AMD treatment under extreme cold weather using solar energy and LEDs, which will serve as an environmentally-friendly solution in line with the era of green growth.

Zoning Permanent Basic Farmland Based on Artificial Immune System coupling with spatial constraints

  • Hua, Wang;Mengyu, Wang;Yuxin, Zhu;Jiqiang, Niu;Xueye, Chen;Yang, Zhang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.5
    • /
    • pp.1666-1689
    • /
    • 2021
  • The red line of Permanent Basic Farmland is the most important part in the "three-line" demarcation of China's national territorial development plan. The scientific and reasonable delineation of the red line is a major strategic measure being taken by China to improve its ability to safeguard the practical interests of farmers and guarantee national food security. The delineation of Permanent Basic Farmland zoning (DPBFZ) is essentially a multi-objective optimization problem. However, the traditional method of demarcation does not take into account the synergistic development goals of conservation of cultivated land utilization, ecological conservation, or urban expansion. Therefore, this research introduces the idea of artificial immune optimization and proposes a multi-objective model of DPBFZ red line delineation based on a clone selection algorithm. This research proposes an objective functional system consisting of these three sub-objectives: optimal quality of cropland, spatially concentrated distribution, and stability of cropland. It also takes into consideration constraints such as the red line of ecological protection, topography, and space for major development projects. The mathematical formal expressions for the objectives and constraints are given in the paper, and a multi-objective optimal decision model with multiple constraints for the DPBFZ problem is constructed based on the clone selection algorithm. An antibody coding scheme was designed according to the spatial pattern of DPBFZ zoning. In addition, the antibody-antigen affinity function, the clone mechanism, and mutation strategy were constructed and improved to solve the DPBFZ problem with a spatial optimization feature. Finally, Tongxu County in Henan province was selected as the study area, and a controlled experiment was set up according to different target preferences. The results show that the model proposed in this paper is operational in the work of delineating DPBFZ. It not only avoids the adverse effects of subjective factors in the delineation process but also provides multiple scenarios DPBFZ layouts for decision makers by adjusting the weighting of the objective function.

A Study on the Prediction of Strawberry Production in Machine Learning Infrastructure (머신러닝 기반 시설재배 딸기 생산량 예측 연구)

  • Oh, HanByeol;Lim, JongHyun;Yang, SeungWeon;Cho, YongYun;Shin, ChangSun
    • Smart Media Journal
    • /
    • v.11 no.5
    • /
    • pp.9-16
    • /
    • 2022
  • Recently, agricultural sites are automating into digital agricultural smart farms by applying technologies such as big data and Internet of Things (IoT). These smart farms aim to increase production and improve crop quality by measuring the environment of crops, investigating and processing data. Production prediction is an important study in smart farm digital agriculture, which is a high-tech agriculture, and it is necessary to analyze environmental data using big data and further standardized research to manage the quality of growth information data. In this paper, environmental and production data collected from smart farm strawberry farms were analyzed and studied. Based on regression analysis, crop production prediction models were analyzed using Ridge Regression, LightGBM, and XGBoost. Among the three models, the optimal model was XGBoost, and R2 showed 82.5 percent explanatory power. As a result of the study, the correlation between the amount of positive fluid absorption and environmental data was confirmed, and significant results were obtained for the production prediction study. In the future, it is expected to contribute to the prevention of environmental pollution and reduction of sheep through the management of sheep by studying the amount of sheep absorption, such as information on the growing environment of crops and the ingredients of sheep.

A Study on the Measurement of the Dimensionless Light Extinction Constant for Particulate Matter from Fuel Oil for Marine and Land Diesel Engines (선박 및 육상 디젤 엔진용 연료유에서 발생하는 입자상물질에 대한 무차원 광소멸계수 계측에 관한 연구)

  • Rho, Beom-Seok;Choi, Jae-Hyuk;Cho, Kwon-Hae;Park, Seul-Hyun;Lee, Won-Ju
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.2
    • /
    • pp.275-281
    • /
    • 2018
  • It is known that he pollutant emitted from the combustion process of marine fuel oil causes air pollution and harmful effects to the human body. Accordingly, IMO regulates pollutants emitted from ships. However, the regulation of Particulate Matter (PM) is still in the process of debate, so preemptive action is needed. Fundamental research on PM is essential. In this study, the Dimensionless Light Extinction Constant ($K_e$) of fuel oil used in marine diesel engines was measured and analyzed to construct the basic data of the PM generated from marine-based fuel oil. The fuel oil used in the land diesel engine was measured in the same way for character comparison. Both fuel oils differ in sulfur content and density. The $K_e$ was measured via the optical method using a 633 nm laser and was determined by using the volume fraction of PM collected by the gravimetric filter method. The $K_e$ of the PM discharged from marine fuel oil is 8.28, and the land fuel oil is 8.44. The $K_e$ of two fuel oils was similar within the measurement uncertainty range. However, it was found by comparison with the value obtained by the Rayleigh-Limit solution that the light scattering portion could be large. Also, it was found that light extinction characteristics could be different due to the relationship between light transmittance and collected mass.

Lead Concentrations of Pigeon's Tissue as Indicator of Lead pollution in Air and Soil (대기 및 토양 오염의 지표로서 비둘기 조직의 연농도)

  • Byun, Yung-Woo;Hwang, Tae-Yoon;Lee, Jung-Jeung;Kim, Chang-Yoon;Chung, Jong-Hak
    • Journal of Preventive Medicine and Public Health
    • /
    • v.29 no.1 s.52
    • /
    • pp.15-26
    • /
    • 1996
  • It has been studied that a variety of fauna and flora are sensitive biological indicators which reflect the severity of regional pollution of heavy metals, but in the center of part of Taegu City the controversial issue of lead poisoning attributable to the atmosphere which contains an increased concentrations of lead has been raised recently, it is usually hard to find suitable plants or animal in the areas with heavy traffic. Pigeons are ubiquitous in and around Taegu City area, inhabiting even the most densely populated areas with heavy traffic. With its small body size, high metabolic turnover, and rather limited mobility, a pigeon, as a biological indicator is expected. This study was conducted to monitor lead pollution in the Taegu and Kyongju City in Korea. We measured the lead content of the various tissue of three groups of feral pigeon(Columba livia) and soil and atmospheric lead concentration. First group was obtained in heavy traffic area in Taegu City, the second group was obtained a park in Taegu City and the third group was obtained light traffic area in Kyongju City. The air and soil lead concentration of heavy traffic area in Taegu City was $0.11{\mu}g/m^3,\;4.96{\mu}g/g$, that of park in Taegu City was $0.05{\mu}g/m^3,\;2.65{\mu}g/g$ and that of light traffic area in Kyongju City was $0.03{\mu}g/m^3,\;0.01{\mu}g/g$. The lead content of lung, blood, kidney, femur and liver of feral pigeons in heavy traffic area in Taegu City was significantly higher than pigeons obtained in a park in Taegu City and low traffic density area in Kyongju City(p<0.01). But stomach lead content of three group did not reflect a significant difference. In this study positive correlation was found between atmospheric lead concentrations and the concentration of lead in the pigeon's lung(r=0.5040, p<0.001), blood(r=0.3322, p<0.01), kidney(r=0.4824, p<0.001), femur(r=0.7214, p<0.001) and liver(r=0.4836, p<0.01). We can also found positive correlation between soil lead concentrations and the concentration of lead in the pigeon's femur(r=0.4850, p<0.001), kidney(r=0.4850, p<0.001) and liver(r=0.4386, p<0.01). In the pigeon's tissue there were significant correlations between concentration of lead in the blood and kidney(r=4818, p<0.001), femur(r=0.6157, p<0.001) and liver(r=0.3889, p<0.001). In conclusion, at the heavy traffic area in Taegu City, lead concentrations found in the atmosphere and soil are reflected in the lead concentrations of different tissue of urban pigeons. It is suggested that the tissue of pigeons can be good biological indicators of environmental lead pollution.

  • PDF