• Title/Summary/Keyword: Light Metal

Search Result 1,253, Processing Time 0.031 seconds

The Physiological and Biochemical Studies of Nocardia sp (Part I) Cell Fine Structure of Nocardia sp (Nocardia sp의 생이생화학적연구 (제1보) Nocardia sp의 미세구조에 관하여)

  • 홍순덕
    • Microbiology and Biotechnology Letters
    • /
    • v.5 no.3
    • /
    • pp.133-140
    • /
    • 1977
  • The results of electron microscopic studies on the cell fine structure of Nocardia sp the location of tellurite-reducing enzyme and the reduction part of T. T. C. (Triphenyl tetrazonium chloride) were summarized as follows. As the fine structure of the cell, the membrane-like structure with unit membrane was distributed in the cytoplasm. The membrane-like structure had complicate forms: some of membrane-like structure appeared spiral form. As the metal tellurium salt appeared in the cytoplasm, it is obvious that tellurite and tellurate-reducing enzymes are present in the cytoplasm. Reduction of T. T. C. took place in the cell membrane and the intracellular membrane-like structure. Therefore, it was thought that reduction of tellurate and T. T. C. took place in different parts. T. T. C. formazane formed in the cell was reoxidized by osmic acid which was used as a fixation reagent for the electron microscopic specimen preparation. As 95% T. T. C. formazane was soluble in ethanol and embedding materials and removed out of the cell, an originally formed formazane appeared as electron light part on the electron microscopic image.

  • PDF

Design Analysis/Manufacturing /Performance Evaluation of Curved Unsymmetrical Piezoelectric Composite Actuator LIPCA (곡면형 비대칭 압전복합재료 작동기 LIPCA의 설계해석/제작/성능평가)

  • Gu, Nam-Seo;Sin, Seok-Jun;Park, Hun-Cheol;Yun, Gwang-Jun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.10
    • /
    • pp.1514-1519
    • /
    • 2001
  • This paper is concerned with design, manufacturing and performance test of LIPCA ( Lightweight Piezo- composite Curved Actuator) using a top carbon fiber composite layer with near -zero CTE(coefficient of thermal expansion), a middle PZT ceramic wafer and a bottom glass/epoxy layer with high CTE. The main point of this design is to replace the heavy metal layers of THUNDER by thigh tweight fiber reinforced plastic layers without losing capabilities to generate high force and large displacement. It is possible to save weight up to about 30% if we replace the metallic backing material by the light fiber composite layer. We can also have design flexibility by selecting the fiber direction and the size of prepreg layers. In addition to the lightweight advantage and design flexibility, the proposed device can be manufactured without adhesive layers when we use epoxy resin prepreg system. Glass/epoxy prepregs, a ceramic wafer with electrode surfaces, and a graphite/epoxy prepreg were simply stacked and cured at an elevated temperature (177 $^{circ}C$ after following an autoclave bagging process. It was found that the manufactured composite laminate device had a sufficient curvature after detached from a flat mold. The analysis method of the cure curvature of LIPCA using the classical lamination theory is presented. The predicted curvatures are fairly in agreement with the experimental ones. In order to investigate the merits of LIPCA, a performance test of both LIPCA and THUNDE$^{TM}$ were conducted under the same boundary conditions. From the experimental actuation tests, it was observed that the developed actuator could generate larger actuation displacement than THUNDERT$^{TM}$.

Red Pigment of the Korean Cockcomb Flower: Color Stability of the Red Pigment (한국산 맨드래미 꽃의 적색 색소 : 적색 색소의 식품학적 안정성)

  • Lee, S.Y.;Cho, S.J.;Lee, K.A.;Byun, P.H.;Byun, S.M.
    • Korean Journal of Food Science and Technology
    • /
    • v.21 no.3
    • /
    • pp.446-452
    • /
    • 1989
  • The pigment of the Korean cockscomb flower, a betacyanin, was evaluated for its stability in terms of temperature, pH, and its behavior upon exposure to water, light, and air. The pigment was the most stable at pH 4.0, and its activation energy (Ea) for degradation was shown to be 17.55Kcal/mol. In general, sugars protected against color degradation at the concentration of 0.1M. Degradation of this pigment in the presence of food constituents, such as organic acids , metal ions, or antioxidants, at the concentrations normally present in food preparations, can be kept to a minimum by selective adjustment of conditions. This pigment, therefore, has potential value as a food colorant under selected conditions.

  • PDF

Changes of Color in Doenjang by Different Browning Factors (갈변인자에 따른 된장 색깔의 변화)

  • Kwon, Dong-Jin;Kim, Yoo-Jin;Kim, Hyun-Jung;Hong, Seok-San;Kim, Hyun-Ku
    • Korean Journal of Food Science and Technology
    • /
    • v.30 no.5
    • /
    • pp.1000-1005
    • /
    • 1998
  • To establish the process control for inhibiting browning of Doenjang, the factors of browning were investigated. The browning of Doenjang was prompted by oxygen, temperature, light and Fe. Expecially temperature, oxygen and metal were main factors of browning in Doenjang. The Color Doenjang was determined by ratios of raw materials, process of manufacture and the channel of distribution. Among ascorbic acid and anti-browning agent, anti-browning agent was effective to inhibit the browning of Doenjang. The process control to inhibit the browning of Doenjang was as follows: temperature; $20^{\circ}C$ or less than, oxygen; elimination, Fe; inhibition of inflow.

  • PDF

Effects of Al-doping on IZO Thin Film for Transparent TFT

  • Bang, J.H.;Jung, J.H.;Song, P.K.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.207-207
    • /
    • 2011
  • Amorphous transparent oxide semiconductors (a-TOS) have been widely studied for many optoelectronic devices such as AM-OLED (active-matrix organic light emitting diodes). Recently, Nomura et al. demonstrated high performance amorphous IGZO (In-Ga-Zn-O) TFTs.1 Despite the amorphous structure, due to the conduction band minimum (CBM) that made of spherically extended s-orbitals of the constituent metals, an a-IGZO TFT shows high mobility.2,3 But IGZO films contain high cost rare metals. Therefore, we need to investigate the alternatives. Because Aluminum has a high bond enthalpy with oxygen atom and Alumina has a high lattice energy, we try to replace Gallium with Aluminum that is high reserve low cost material. In this study, we focused on the electrical properties of IZO:Al thin films as a channel layer of TFTs. IZO:Al were deposited on unheated non-alkali glass substrates (5 cm ${\times}$ 5 cm) by magnetron co-sputtering system with two cathodes equipped with IZO target and Al target, respectively. The sintered ceramic IZO disc (3 inch ${\phi}$, 5 mm t) and metal Al target (3 inch ${\phi}$, 5 mm t) are used for deposition. The O2 gas was used as the reactive gas to control carrier concentration and mobility. Deposition was carried out under various sputtering conditions to investigate the effect of sputtering process on the characteristics of IZO:Al thin films. Correlation between sputtering factors and electronic properties of the film will be discussed in detail.

  • PDF

The Effects of Doping Hafnium on Device Characteristics of $SnO_2$ Thin-film Transistors

  • Sin, Sae-Yeong;Mun, Yeon-Geon;Kim, Ung-Seon;Park, Jong-Wan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.199-199
    • /
    • 2011
  • Recently, Thin film transistors (TFTs) with amorphous oxide semiconductors (AOSs) can offer an important aspect for next generation displays with high mobility. Several oxide semiconductor such as ZnO, $SnO_2$ and InGaZnO have been extensively researched. Especially, as a well-known binary metal oxide, tin oxide ($SnO_2$), usually acts as n-type semiconductor with a wide band gap of 3.6eV. Over the past several decades intensive research activities have been conducted on $SnO_2$ in the bulk, thin film and nanostructure forms due to its interesting electrical properties making it a promising material for applications in solar cells, flat panel displays, and light emitting devices. But, its application to the active channel of TFTs have been limited due to the difficulties in controlling the electron density and n-type of operation with depletion mode. In this study, we fabricated staggered bottom-gate structure $SnO_2$-TFTs and patterned channel layer used a shadow mask. Then we compare to the performance intrinsic $SnO_2$-TFTs and doping hafnium $SnO_2$-TFTs. As a result, we suggest that can be control the defect formation of $SnO_2$-TFTs by doping hafnium. The hafnium element into the $SnO_2$ thin-films maybe acts to control the carrier concentration by suppressing carrier generation via oxygen vacancy formation. Furthermore, it can be also control the mobility. And bias stability of $SnO_2$-TFTs is improvement using doping hafnium. Enhancement of device stability was attributed to the reduced defect in channel layer or interface. In order to verify this effect, we employed to measure activation energy that can be explained by the thermal activation process of the subthreshold drain current.

  • PDF

Structural Evolution of ZnO:Ga Thin Film on Profiled Substrate Grown by Radio Frequency Sputtering

  • Sun, J.H.;Kim, J.H.;Ahn, B.G.;Park, S.Y.;Jung, E.J.;Lee, J.H.;Kang, H.C.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.72-72
    • /
    • 2011
  • Recently, Zinc oxide (ZnO) nano-structures have been received attractive attention because of their outstanding optical and electrical properties. It might be a promising material considered for applications to photonic and electronic devices such as ultraviolet light emitting diode, thin film transistor, and gas sensors. ZnO nano-structures can be typically synthesized by the VLS growth mode and self-assembly. In the VLS growth mode using various growth techniques, the noble metal catalysts such as Au and Sn were used. However, the growth of ZnO nano-structures on nano-crystalline Au seeds using radio frequency (RF) magnetron sputtering might be explained by the profile coating, i.e. the ZnO nano-structures were a morphological replica of Au seeds. Ga doped ZnO (ZnO:Ga) nano-structures using this concept were synthesized and characterized by XRD, AFM, SEM, and TEM. We found that surface morphology is drastically changed from initial islands to later sun-flower typed nano-structures. We will present the structural evolution of ZnO:Ga nano-structures with increasing the film thickness.

  • PDF

Design of an Electron Ohmic-Contact to Improve the Balanced Charge Injection in OLEDs

  • Park, Jin-U;Im, Jong-Tae;Yeom, Geun-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.283-283
    • /
    • 2011
  • The n-doping effect by doping metal carbonate into an electron-injecting organic layer can improve the device performance by the balanced carrier injection because an electron ohmic contact between cathode and an electron-transporting layer, for example, a high current density, a high efficiency, a high luminance, and a low power consumption. In the study, first, we investigated an electron-ohmic property of electron-only device, which has a ITO/$Rb_2CO_3$-doped $C_{60}$/Al structure. Second, we examined the I-V-L characteristics of all-ohmic OLEDs, which are glass/ITO/$MoO_x$-doped NPB (25%, 5 nm)/NPB (63 nm)/$Alq_3$ (32 nm)/$Rb_2CO_3$-doped $C_{60}$(y%, 10 nm)/Al. The $MoO_x$doped NPB and $Rb_2CO_3$-doped fullerene layer were used as the hole-ohmic contact and electron-ohmic contact layer in all-ohmic OLEDs, respectively, Third, the electronic structure of the $Rb_2CO_3$-doped $C_{60}$-doped interfaces were investigated by analyzing photoemission properties, such as x-ray photoemission spectroscopy (XPS), Ultraviolet Photoemission spectroscopy (UPS), and Near-edge x-ray absorption fine structure (NEXAFS) spectroscopy, as a doping concentration at the interfaces of $Rb_2CO_3$-doped fullerene are changed. Finally, the correlation between the device performance in all ohmic devices and the interfacial property of the $Rb_2CO_3$-doped $C_{60}$ thin film was discussed with an energy band diagram.

  • PDF

Insertion of Carbon Interlayer Into GaN Epitaxial Layer

  • Yu, H.S.;Park, S.H.;Kim, M.H.;Moon, D.Y.;Nanishi, Y.;Yoon, E.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.148-149
    • /
    • 2012
  • This paper reports doping of carbon atoms in GaN layer, which based on dimethylhydrazine (DMHy) and growth temperature. It is well known that dislocations can act as non-radiative recombination center in light emitting diode (LED). Recently, many researchers have tried to reduce the dislocation density by using various techniques such as lateral epitaxial overgrowth (LEO) [1] and patterned sapphire substrate (PSS) [2], and etc. However, LEO and PSS techniques require additional complicated steps to make masks or patterns on the substrate. Some reports also showed insertion of carbon doped layer may have good effect on crystal quality of GaN layer [3]. Here we report the growth of GaN epitaxial layer by inserting carbon doped GaN layer into GaN epitaxial layer. GaN:C layer growth was performed in metal-organic chemical vapor deposition (MOCVD) reactor, and DMHy was used as a carbon doping source. We elucidated the role of DMHy in various GaN:C growth temperature. When growth temperature of GaN decreases, the concentration of carbon increases. Hence, we also checked the carbon concentration with DMHy depending on growth temperature. Carbon concentration of conventional GaN is $1.15{\times}1016$. Carbon concentration can be achieved up to $4.68{\times}1,018$. GaN epilayer quality measured by XRD rocking curve get better with GaN:C layer insertion. FWHM of (002) was decreased from 245 arcsec to 234 arcsec and FWHM of (102) decreased from 338 arcsec to 302 arcsec. By comparing the quality of GaN:C layer inserted GaN with conventional GaN, we confirmed that GaN:C interlayer can block dislocations.

  • PDF

Anatomical Characteristics and Trace Elements of Historical Papers and Cloths from Neunggasa Temple in Korea (능가사 출토 종이와 섬유의 해부학적 성질 및 미량원소 분석)

  • Wazny, Agnieszka Helman;Park, Won-kyu
    • Journal of Conservation Science
    • /
    • v.10 no.1 s.13
    • /
    • pp.1-9
    • /
    • 2001
  • The objective of this study is to examine the characteristics of historical papers and cloths found at Neunggasa temple, Goheunggun, Chonnam Province, Korea, using light microscopy, image analysis and SEM-EDS for fiber morphology and trace metal composition. All papers were made from paper mulberry. Transparent membrane, which was separated from bast fiber, was unique in these fibers. The papers found on the wall of Daewungjun were most highly degraded and those of the books, which were excavated under Cheungwangmun, were relatively well preserved. The cloths found under the statue 'Dong-bangjiguk' were silk, very narrow fiber without any marks. In the analysis of SEM-EDS, high content of silica was detected. Also small content of calcium was taken into consideration. Content of iron and chlorine were discussed from the viewpoint of potentially harmful elements for the conservation of paper. The composition of trace elements could not be used to determine the origins of papers.

  • PDF