• Title/Summary/Keyword: Light Metal

Search Result 1,253, Processing Time 0.033 seconds

A Study on the Chattering under Cryogenic Flow Test of a Oxidizer Shutoff Valve (산화제 개폐밸브의 극저온 유동시험에서 채터링의 고찰)

  • Lee, JoongYoup;Han, SangYeop;Lee, SooYong
    • Aerospace Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.108-117
    • /
    • 2013
  • The oxidizer shutoff valve of a gas generator controls the mass flow rate of the propellant of a rocket engine using pilot pressure and spring the force of the valve. The developing oxidizer shutoff valve can be shut off if the pilot pressure is removed from the actuator. Therefore, force balancing is necessary to analyze the characteristics of the forces with respect to the opening and closing of the valve in order to evaluate its performance. In light of this, the valve has been designed to adjust the control pressure required to open the poppet and to determine the working fluid pressure at which the valve starts to close. Under cryogenic flow test as a tests level of C.R.T(Control Random Test), the chattering phenomena occurred due to much leakage of a metal seat section. The pressure for chattering of the oxidizer valve is predicted at about 11 bar using force balancing analysis.

Crosslinking reaction system of polymers (고분자 가교반응 시스템)

  • Ko, Jong-Sung
    • Journal of the Korean Applied Science and Technology
    • /
    • v.29 no.1
    • /
    • pp.19-32
    • /
    • 2012
  • Pharmaceutical use accounts for a great part of articles and papers on crosslinking of polymers. Crosslinking of polymers used for tissue engineering and drug delivery respects non-cytotoxicity and in situ gelling. The crosslinking of polymers is aimed not only at the improvement of modulus, chemical resistance, and thermal resistance, but also at endowing them with such functions as metal adsorption, antifouling, and ion exchange via crosslinked segments. Smart polymers responding to environmental change, and cosslinking mediated by light, enzyme, natural compound and in aqueous medium in consideration of environment are being studied. Developing new polymeric materials is essential along with the pharmaceutics aiming at the longevity of 120 years old. Functionalization and property adjustment of polymers through crosslinking will be done more delicately. Hydrogels will be focused on injectable and in situ gel forming. In the coating industry crosslinking system with low non-toxicity and low energy consumption will be developed in consideration of workers and environment.

Performance Comparison and Test of Fixed FOD Automatic Detection System and Moving FOD Automatic Detection System (고정형 이물질(FOD) 자동 탐지 시스템과 이동형 이물질 자동 탐지 시스템의 성능 비교 및 시험)

  • Kim, Sung-Hee;Hong, Jae-Beom;Park, Kwang-Gun;Choi, In-Kyu;Hong, Gyo-Young
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.6
    • /
    • pp.495-500
    • /
    • 2019
  • Foreign object debris (FOD) is a generic term for various metals and non-metal foreign object and materials with potential hazards to aircraft operations. Since the method of manual FOD detection and collection in the aircraft moving area is very low in efficiency and economic efficiency, it is essential to develop to FOD automatic detection system suitable for domestic environment. This paper is the result of the performance comparison test results of the two systems for the combined operation of each optimal detection time and 95% accuracy above 100 m for complex operation using the fixed FOD automatic detection system and the mobile FOD system using EO/IR camera and radar at Taean Airfield Hanseo University. It is expected that FOD can be performed unattended through continuous R & D.

THE EFFECTS OF RADIAL HEAT SINK GEOMETRY AND SURFACE COATINGS ON THE LED COOLING PERFORMANCE FOR HIGH POWER LED LAMP (고출력 LED 램프 용 방사형 히트싱크의 형상 및 표면코팅이 LED 냉각성능에 미치는 영향에 대한 연구)

  • Kim, H.S.;Park, S.H.;Kim, D.;Kim, K.
    • Journal of computational fluids engineering
    • /
    • v.18 no.1
    • /
    • pp.63-68
    • /
    • 2013
  • The purpose of this study is to investigate the cooling performance of radial heat sink used for high power LED lightings by natural convection cooling with surrounding air. Experimental and numerical analyses are carried out together. Parametric studies are performed to compare the effects of geometric parameters in radial heat sink such as the number of fins, fin height, fin length, and thickness of fin base as well as the surface coatings of radial heat sink. In this study, the cooling of 60 W LED lamp is examined with radiative heat transfer considered as well as natural convection. Numerical results show the optimum condition when the number of fin is 40, heat sink height is 120 mm, fin length is 15 mm, and fin base thickness is 3 mm. The difference in temperature of the LED metal PCB is within $1^{\circ}C$ between numerical analyses and experimental results. Also, the CNT coating on the heat sink surface is found to increase the cooling performance significantly.

Electrical, Electronic Structure and Optical Properties of Undoped and Na-doped NiO Thin Films

  • Denny, Yus Rama;Lee, Kangil;Seo, Soonjoo;Oh, Suhk Kun;Kang, Hee Jae;Yang, Dong-Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.193.1-193.1
    • /
    • 2014
  • This study was to investigate the electronic structure and optical properties of Na doped into NiO thin film using XPS and REELS. The films were grown by electron beam evaporation with varying the annealing temperature. The relationship between the electrical characteristics with the local structure of NiO thin films was also discussed. The x-ray photoelectron results showed that the Ni 2p spectra for all films consist of Ni 2p3/2 which indicate the presence of Ni-O bond from NiO phase and for the annealed film at temperature above $200^{\circ}C$ shows the coexist Ni oxide and Ni metal phase. The reflection electron energy loss spectroscopy spectra showed that the band gaps of the NiO thin films were slightly decreased with Na-doped into films. The Na-doped NiO showed relatively low resistivity compared to the undoped NiO thin films. In addition, the Na-doped NiO thin films deposited at room temperature showed the best properties, such as a p-type semiconducting with low electrical resistivity of $11.57{\Omega}.cm$ and high optical transmittance of ~80% in the visible light region. These results indicate that the Na doping followed by annealing process plays a crucial in enhancing the electrical and optical properties of NiO thin films. We believe that our results can be a good guide for those growing NiO thin films with the purpose of device applications, which require deposited at room temperature.

  • PDF

Fabrication of GaN Micro-pyramid Structure Arrays for Phosphor-free white Lighting-emitting Diode

  • Sim, Young-Chul;Ko, Young-Ho;Lim, Seung-Hyuk;Cho, Yong-Hoon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.299-299
    • /
    • 2014
  • 기존의 고출력 광원들이 환경문제 등으로 외국에서 규제대상으로 지정되고 있는 가운데고체 상태의 광원인 Light-emitting diode (LED)는 기존의 광원에 비해 에너지 절감효과 크기 때문에 인해 널리 사용되고 있는 추세이다. 대부분의 백색 LED의 경우 청색 LED에 황색 형광체를 사용하는 것이 일반적이다. 그러나 이의 경우 빛의 흡수와 재방출 과정에서 생기는 에너지 변환손실의 문제가 불가피하다. 또한, 두 종류의 색을 섞어서 나타나는 낮은 연색성의 문제가 있고 사용할 수 있는 형광체의 종류와 조합도 일본 등 해외에 출원된 특허권으로 연구개발에 어려움이 있다. 이를 해결하기 위해 본 연구에서는 형광체를 사용하지 않는 단일 백색 LED를 개발을 위하여 극성과 반극성을 조합한 구조를 연구하였다. Photo-lithography를 이용하여 다양한 크기와 구조의 홀 패턴을 얻을 수 있었으며, metal organic chemical vapor deposition을 이용하여 다양한 형태의 피라미드 구조를 성장할 수 있었다. 패턴의 홀 크기와 홀 사이의 간격을 조절하면서 성장을 진행 하였고, 그 결과 pyramid와 truncated pyramid 모양의 GaN 구조를 성장할 수 있었다. [그림 1] Pyramid 구조의 반극성 면과 truncated pyramid 구조의 극성 면사이의 성장속도 차이 때문에 양자우물의 두께가 달라짐을 확인하였다. 이로 인해 양자구속효과가 달라져 다른 파장의 발광을 기대할 수 있었다. 뿐만 아니라 In의 확산거리가 Ga보다 길어서 홀사이 간격을 달리하면 In조성비가 달라지는 효과가 있음을 확인하였고 다양한 홀 사이 간격으로부터 각기 다른 파장의 발광을 얻을 수 있었다. 파장을 조금 더 상세하게 분석하기 위하여 Photoluminescence과 Cathodoluminescence을 사용하였다. 이로써 여러 파장을 발광하는 패턴을 섞어 넓은 영역의 발광 스펙트럼을 만들었다. 특히 패턴을 섞는 방법도 홀과 에피 구조를 섞는 방법, 크기가 다른 홀 패턴을 배열하는 방법등 다양히 하며 가장 좋을 패턴을 연구하였다. 그리하여 최적의 패턴과 구조, 성장조건을 찾아 백색의 CIE 좌표값을 얻을 수 있었다.

  • PDF

Carrier Transport of Quantum Dot LED with Low-Work Function PEIE Polymer

  • Lee, Kyu Seung;Son, Dong Ick;Son, Suyeon;Shin, Dong Heon;Bae, Sukang;Choi, Won Kook
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.432.2-432.2
    • /
    • 2014
  • Recently, colloidal core/shell type quantum dots lighting-emitting diodes (QDLEDs) have been extensively studied and developed for the future of optoelectronic applications. In the work, we fabricate an inverted CdSe/ZnS quantum dot (QD) based light-emitting diodes (QDLED)[1]. In order to reduce work function of indium tin oxide (ITO) electrode for inverted structure, a very thin (<10 nm) polyethylenimine ethoxylated (PEIE) is used as surface modifier[2] instead of conventional metal oxide electron injection layer. The PEIE layer substantially reduces the work function of ITO electrodes which is estimated to be 3.08 eV by ultraviolet photoemission spectroscopy (UPS). From transmission electron microscopy (TEM) study, CdSe/ZnS QDs are uniformly distributed and formed by a monolayer on PEIE layer. In this inverted QD LED, two kinds of hybrid organic materials, [poly (9,9-di-n-octyl-fluorene-alt-benzothiadiazolo)(F8BT) + poly(N,N'-bis (4-butylphenyl)-N,N'-bis(phenyl)benzidine (poly-TPD)] and [4,4'-N,N'-dicarbazole-biphenyl (CBP) + poly-TPD], were adopted as hole transport layer having high highest occupied molecular orbital (HOMO) level for improving hole transport ability. At a low-operating voltage of 8 V, the device emits orange and red spectral radiation with high brightness up to 2450 and 1420 cd/m2, and luminance efficacy of 1.4 cd/A and 0.89 cd/A, respectively, at 7 V applied bias. Also, the carrier transport mechanisms for the QD LEDs are described by using several models to fit the experimental I-V data.

  • PDF

Simulation Study of Front-Lit Versus Back-Lit Si Solar Cells

  • Choe, Kwang Su
    • Korean Journal of Materials Research
    • /
    • v.28 no.1
    • /
    • pp.38-42
    • /
    • 2018
  • Continuous efforts are being made to improve the efficiency of Si solar cells, which is the prevailing technology at this time. As opposed to the standard front-lit solar cell design, the back-lit design suffers no shading loss because all the metal electrodes are placed on one side close to the pn junction, which is referred to as the front side, and the incoming light enters the denuded back side. In this study, a systematic comparison between the two designs was conducted by means of computer simulation. Medici, a two-dimensional semiconductor device simulation tool, was utilized for this purpose. The $0.6{\mu}m$ wavelength, the peak value for the AM-1.5 illumination, was chosen for the incident photons, and the minority-carrier recombination lifetime (${\tau}$), a key indicator of the Si substrate quality, was the main variable in the simulation on a p-type $150{\mu}m$ thick Si substrate. Qualitatively, minority-carrier recombination affected the short circuit current (Isc) but not the opencircuit voltage (Voc). The latter was most affected by series resistance associated with the electrode locations. Quantitatively, when ${\tau}{\leq}500{\mu}s$, the simulation yielded the solar cell power outputs of $20.7mW{\cdot}cm^{-2}$ and $18.6mW{\cdot}cm^{-2}$, respectively, for the front-lit and back-lit cells, a reasonable 10 % difference. However, when ${\tau}$ < $500{\mu}s$, the difference was 20 % or more, making the back-lit design less than competitive. We concluded that the back-lit design, despite its inherent benefits, is not suitable for a broad range of Si solar cells but may only be applicable in the high-end cells where float-zone (FZ) or magnetic Czochralski (MCZ) Si crystals of the highest quality are used as the substrate.

A STUDY ON THE FRACTURE TOUGHNESS OF DENTAL COMPOSITE RESINS (치과용 복합레진의 파괴인성에 관한 실험적 연구)

  • Park, Jin-Hoon;Min, Byung-Soon;Choi, Ho-Young;Park, Sang-Jin
    • Restorative Dentistry and Endodontics
    • /
    • v.15 no.2
    • /
    • pp.17-33
    • /
    • 1990
  • The purpose of this study was to evaluate the fracture toughness of dental composite resins and to investigate the filler factor affecting the fracture behaviour on which the degree of fracture toughness depends. Six kinds of commercially available composite resin;, including two of each macrofilled, microfilled, and hybrid type were used for this study, The plane strain fracture toughness ($K_{10}$) was determined by three-point bending test using the single edge notch specimen according to the ASTM-E399. The specimens were fabricated with visible light curing or self curing of each composite resin previously inserted into a metal mold, and three-point bending test was conducted with cross-head speed of 0.1mm/min following a day's storage of the specimens in $37^{\circ}C$ distilled water. The filler volume fractions were determined by the standard ashing test according to the ISO-4049. Acoustic Emission(AE), a nondestructive testing method detecting the elastic wave released from the localized sources In material under a certain stress, was detected during three-point bending test and its analyzed data was compared with, canning electron fractographs of each specimen. The results were as follows : 1. The filler content of composite resin material was found to be highest in the hybrid type followed by the macrofilled type, and the microfilled type. 2. It was found that the value of plane strain fracture toughness of composite resin material was in the range from 0.69 MPa$\sqrt{m}$ to 1 46 MPa$\sqrt{m}$ and highest In the macrofilled type followed by the hybrid type, and the microfilled type. 3. The consequence of Acoustic Emission analysis revealed that the plane strain fracture toughness increased according as the count of Acoustic Emission events increased. 4. The higher the plane strain fracture toughness became, the higher degree of surface roughness and irregularity the fractographs demonstrated.

  • PDF

A Sunglasses Design to Prevent Snow Blindness at High Altitude (설맹 방지를 위한 고소등반용 선글라스 디자인)

  • Choi, Byung-Jin;Jang, Joon-Young
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.12 no.4
    • /
    • pp.19-22
    • /
    • 2007
  • Recently, the population of people exploring High Mountain trekking or expedition is increasing as an increase in the backpackers. Many accidents occurring at High Mountain above 6,000 m are the results of snow blindness. The damage of cornea and/or retina is direct cause of snow blindness. The UV intensity increases on the hand, along with the altitude caused by decrease in the atmospheric pressure, on the other hand the reflections by bright snow at high mountain area. And it increases approximately 3 times and 4 times higher than the ground level at altitude of 4,000 m and 8,000 m, respectively. The use of sunglasses is more favorable than goggles for the protection of snow blindness at High Mountains. The eye frames that have high mechanical strength and the plastic lenses which can protect UV 100% are recommended. The attachable shielding pads are needed to prevent the incident UV light reflected or scattered from the gap between glasses frame and face. The sunglasses must have flexible and long temples to wind the ears adequately for the prevention of detachment during climbing and it is recommended that the metal frame to be coated with plastics to prevent the eye surroundings from frostbite.

  • PDF