• Title/Summary/Keyword: Ligand-exchange reaction

Search Result 44, Processing Time 0.023 seconds

Reduction Kinetics of Gold Nanoparticles Synthesis via Plasma Discharge in Water

  • Sung-Min Kim;Woon-Young Lee;Jiyong Park;Sang-Yul Lee
    • Journal of the Korean institute of surface engineering
    • /
    • v.56 no.6
    • /
    • pp.386-392
    • /
    • 2023
  • In this work, we describe the reduction kinetics of gold nanoparticles synthesized by plasma discharge in aqueous solutions with varied voltages and precursor (HAuCl4) concentrations. The reduction rate of [AuCl4]- was determined by introducing NaBr to the gold colloidal solution synthesized by plasma discharge, serving as a catalyst in the reduction process. We observed that [AuCl4]- was completely reduced when its characteristic absorption peak at 380 nm disappeared, indicating the absence of [AuCl4]- for ligand exchange with NaBr. The reduction rate notably increased with the rise in discharge voltage, attributable to the intensified plasma generated by ionization and excitation, which in turn accelerated the reduction kinetics. Regarding precursor concentration, a lower concentration was found to retard the reduction reaction, significantly influencing the reduction kinetics due to the presence of active H+ and H radicals. Therefore, the production of strong plasma with high plasma density was observed to enhance the reduction kinetics, as evidenced by optical emission spectroscopy.

Synthesis and Application of New Type Organometallic Catalyszt -Synthesis of Bisphosphonite-Rhodium Complexes- (입체선택적 유기합성반응을 위한 새로운 촉매 합성과 이의 응용 -Bisphosphonite-Rhodium 촉매합성-)

  • Kyung, Suk-Hun
    • Applied Biological Chemistry
    • /
    • v.40 no.6
    • /
    • pp.588-592
    • /
    • 1997
  • The new type ligand, bisphosphonites, were easily prepared through ligand exchange reaction of bis (diethylamino)phosphine with diols. These bisphosphonites reacted with $(COD)^2Rh^+BF_4\;^-$ to corresponding bisphosphonite-rhodium(I) comlexes, of which X-ray crystallography was for the first time investigated. This organometallic compound was applicated in hydroformylation reaction as catalyst, and proved to be very effective one.

  • PDF

InP Quantum Dot-Organosilicon Nanocomposites

  • Dung, Mai Xuan;Mohapatra, Priyaranjan;Choi, Jin-Kyu;Kim, Jin-Hyeok;Jeong, So-Hee;Jeong, Hyun-Dam
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.5
    • /
    • pp.1491-1504
    • /
    • 2012
  • InP quantum dot (QD)-organosilicon nanocomposites were synthesized and their photoluminescence quenching was mainly investigated because of their applicability to white LEDs (light emitting diodes). The as-synthesized InP QDs are capped with myristic acid (MA), which are incompatible with typical silicone encapsulants. We have introduced a new ligand, 3-aminopropyldimethylsilane (APDMS), which enables embedding the QDs into vinyl-functionalized silicones through direct chemical bonding. The exchange of ligand from MA to APDMS does not significantly affect the UV absorbance of the InP QDs, but quenches the PL to about 10% of its original value with the relative increase in surface related emission intensities, which is explained by stronger coordination of the APDMS ligands to the surface indium atoms. InP QD-organosilicon nanocomposites were synthesized by connecting the QDs using a short cross-linker such as 1,4-divinyltetramethylsilylethane (DVMSE) by the hydrosilylation reaction. The formation and changes in the optical properties of the InP QD-organosilicon nanocomposite were monitored by ultraviolet visible (UV-vis) absorbance and steady state photoluminescence (PL) spectroscopies. As the hydrosilylation reaction proceeds, the QD-organosilicon nanocomposite is formed and grows in size, causing an increase in the UV-vis absorbance due to the scattering effect. At the same time, the PL spectrum is red-shifted and, very interestingly, the PL is quenched gradually. Three PL quenching mechanisms are regarded as strong candidates for the PL quenching of the QD nanocomposites, namely the scattering effect, F$\ddot{o}$rster resonance energy transfer (FRET) and cross-linker tension preventing the QD's surface relaxation.

Er(III)-chelated Prototype Complexes Based on Benzoate and Pentafluorobenzoate Ligands : Synthesis and Key Parameters for Near IR Emission Enhancement

  • Roh, Soo-Gyun;Oh, Jae-Buem;Nah, Min-Kook;Baek, Nam-Seob;Lee, Young-Il;Kim, Hwan-Kyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.10
    • /
    • pp.1503-1507
    • /
    • 2004
  • New synthetic methodology of the saturated and unsaturated Er(III)-chelated prototype complexes based on benzoate and pentafluorobenzoate ligands was developed through ligand-exchange reaction. The saturated 8-coordinated Er(III) complexes exhibit stronger near-IR emission than those of the unsaturated 6-coordinated Er(III) complexes, obtained from the direct photoexcitation of Er ions with 488 nm. Three $H_2O$ molecules coordinated in the unsaturated 6-coordinated complexes seriously quenched the near IR emission by the harmonic vibration relaxation decay of O-H bonds. Also, the stronger emission of the Er(III) complexes was obtained by the indirect photoexcitation of ligands than by the direct photoexcitation of the Er(III) ions, due to the energy transfer between the excited ligand and the erbium ion. Furthermore, the saturated Er(III)-chelated complex with C-F bonds shows much stronger near IR emission than that of the saturated Er(III)-chelated complex with C-H bonds. It is attributed to the influence of C-F bonds on near IR emission.

Palladium(II) Aryloxides of Pd(2,6-(CH2NMe2)2C6H3)(OC6H4-X-p) (X = Me, NO2): Synthesis, Property and Reactivity towards Diphenyliodium Chloride

  • Jung, Hyun-Sang;Park, Yun-Sik;Seul, Jung-Min;Kim, Jong-Sook;Lee, Ho-Jin;Park, Soon-Heum
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.8
    • /
    • pp.2711-2716
    • /
    • 2011
  • para-Substituted phenoxide derivatives of Pd(II) having an NCN pincer, Pd(NCN)($OC_6H_4$-p-X) (NCN = 2,6-$(CH_2NMe_2)_2C_6H_3$; X = $NO_2$ (1), Me (2)) were prepared by the reaction of Pd(NCN)($OSO_2CF_3$) with equi-molar amount of $NaOC_6H_4$-p-X. Treatment of Pd(NCN)($OSO_2CF_3$) with an excess amount of $NaOC_6H_4$-p-Me affords the hydrogen-bonding adduct complex 3 ($2{\cdot}HOC_6H_4$-p-Me). Complex 3 can also be obtained from benzene solution of 2 in the presence of free $HOC_6H_4$-p-Me. Complex 1 does not undergo adduct formation with $HOC_6H_4-p-NO_2$ neither from metathesis reaction of Pd(NCN)($OSO_2CF_3$) with an excess amount of $NaOC_6H_4-p-NO_2$ nor from treatment of 1 with free $HOC_6H_4-p-NO_2$. Complex 3 undergoes fast exchange of the coordinated p-cresolate with the hydrogen-bonding p-cresol. Complex 2 undergoes ${\sigma}$-ligand exchange reaction with $HOC_6H_4-p-NO_2$ to give 1. The exchange reaction, however, is irreversible as readily anticipated from their respective $pK_a$ values of the phenol derivatives. Reaction of 2 with diphenyliodium chloride quantitatively produced Pd(NCN)Cl and PhI along with liberation of O-phenylated product $PhOC_6H_4$-p-Me which was identified by GC/MS spectroscopy.

Synthesis and Characterization on Acetonitrile and DMAP Complexes of Indium(III) compounds (Indium(III) 화합물의 Acetonitrile 과 DMAP 착물의 합성 및 특성)

  • Choi, Zel Ho
    • Journal of the Korean Chemical Society
    • /
    • v.42 no.2
    • /
    • pp.184-189
    • /
    • 1998
  • Tris(pentafluorophenyl)indium acetonitrile complexes have been prepared from the reaction of Indium trihalides (halogen=Cl, Br) and bis(pentafluorophenyl)cadmium in acetonitrile, and characterized by elementary analysis, $^13C{^1H}-,\; ^1H-\;and\; ^{19}F-NMR$ spectroscopy and mass spectrometry. The Indium (III) compounds were formed stable 1:1 adducts with acetonitrile. $In(C_6F_5)_3{\cdot}DMAP$ has been prepared from the ligand exchange reaction of In$(C_6F_5)_3 {\cdot} CH_3CN$ with DMAP in $CH_2Cl_2 {\cdot} DMAP$ has higher donating character and replaced the $CH_3CN$ through the ligand transfer reaction.

  • PDF

Enzyme-Conjugated CdSe/ZnS Quantum Dot Biosensors for Glucose Detection

  • Kim, Gang-Il;Sung, Yun-Mo
    • Korean Journal of Materials Research
    • /
    • v.19 no.1
    • /
    • pp.44-49
    • /
    • 2009
  • Conjugated nanocrystals using CdSe/ZnS core/shell nanocrystal quantum dots modified by organic linkers and glucose oxidase (GOx) were prepared for use as biosensors. The trioctylphophine oxide (TOPO)-capped QDs were first modified to give them water-solubility by terminal carboxyl groups that were bonded to the amino groups of GOx through an EDC/NHS coupling reaction. As the glucose concentration increased, the photoluminescence intensity was enhanced linearly due to the electron transfer during the enzymatic reaction. The UV-visible spectra of the as-prepared QDs are identical to that of QDs-MAA. This shows that these QDs do not become agglomerated during ligand exchanges. A photoluminescence (PL) spectroscopic study showed that the PL intensity of the QDs-GOx bioconjugates was increased in the presence of glucose. These glucose sensors showed linearity up to approximately 15 mM and became gradually saturated above 15 mM because the excess glucose did not affect the enzymatic oxidation reaction past that amount. These biosensors show highly sensitive variation in terms of their photoluminescence depending on the glucose concentration.

Adsorption Characteristic of Mg(II), Al(III), Pb(II) Metal Ions on Cryptand Ion Exchange Resin from Water Fire Extinguishing Agent (물 소화약제로부터 Cryptand 이온교환수지의 Mg(II), Al(III) 및 Pb(II) 흡착특성)

  • Kim, Joon-Tae;Kim, Kwan-Chun
    • Journal of environmental and Sanitary engineering
    • /
    • v.23 no.1
    • /
    • pp.57-65
    • /
    • 2008
  • Resins were synthesized with 1-aza-15-crown-5 macrocyclic ligand attached to styrene(dangerous matter) divinylbenzene(DVB) copolymer with crosslink of 1, 2, 6 and 15% by substitution reaction. The synthesis of these resins was confirmed by content of chlorine, element analysis, and IR-spectrum. The effects of pH, time and crosslink on adsorption of metal ion from water fire extinguishing agent by the synthetic resin adsorbent were investigated. The metal ion was showed fast adsorption on the resins above pH 3. The optimum equilibrium time for adsorption of metallic ions was about two hours. The adsorption selectivity determined in water was in increasing order of $Mg^{2+}>Al^{3+}>Pb^{2+}$. The adsorption was in the order of 1, 2, 6, and 15% crosslink resin.

Synthesis of$\beta,\gamma$-Unsaturated Ketones through Ligand-Promoted Hydroiminoacylation of Dienes by Rh

  • Jun Chul-Ho;Koo Bon-Tak;Kang Jung-Bu;Kim Keun-Jae
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.12
    • /
    • pp.1064-1069
    • /
    • 1994
  • Chlorobis(isoprene)rhodium(Ⅰ) (3), prepared by olefin-exchange reaction of chlorobis(cyclooctene)rhodium dimer (2) with isoprene, reacted with benzaldimine 4 to give iminoacylrhodium(Ⅲ) ${\eta}^3$-1,2-dimethylallyl complex 6. Ligand-promoted reductive elimination of 6 by pyridine and P(OMe)$_3$ produced ${\beta},{\gamma}$-unsaturated ketimine 8, which was readily hydrolyzed to give ${\beta},{\gamma}$-unsaturated ketone 9. Other methyl branched dienes such as 2,3-dimethylbutadiene, 3-methyl-1,3-pentadiene, 2-methyl-1,3-pentadiene, 2,4-dimethyl-1,3-pentadiene, 3-methyl-1,4-pentadiene and 2-methyl-1,4-pentadiene, were applied the synthesis of ${\beta},{\gamma}$-unsaturated ketones. In case of 2,4-dimethyl-1,3-pentadiene, only ${\gamma},{\delta}$ -unsaturated ketone 25, 1,2-addition product, was obtained, may be due to the mono-olefin coordination.

Enantiomeric Separation of Free Amino Acids Using N-alkyl-L-proline Copper(Ⅱ) Complex as Chiral Mobile Phase Additive in Reversed Phase Liquid Chromatography

  • Lee Sun Haing;Oh Tae Sub;Lee Hae Woon
    • Bulletin of the Korean Chemical Society
    • /
    • v.13 no.3
    • /
    • pp.280-285
    • /
    • 1992
  • Enantiomeric separation of free amino acids has been achieved by a reversed phase liquid chromatography with addition of a Cu(Ⅱ) complex of N-alkyl-L-proline (alkyl: propyl, pentyl or octyl) to the mobile phase. The amino acids eluted were detected by a postcolumn OPA system. N-alkyl-L-proline was prepared and used as a chiral ligand of Cu(Ⅱ) chelate for the enantiomeric separation. The concentration of the Cu(Ⅱ) chelate, the organic modifier and pH affect the enantiomeric separation of free amino acids. The retention behaviour, varied with change in pH and the concentration of the Cu(Ⅱ) chelate, was different compared with those of the derivatized amino acids. The elution orders between D- and L-forms were consistent except histidine showing that L-forms elute earlier than D-forms. The retention mechanism for the enantiomeric separation can be illustrated by the stereospecificity of the ligand exchange reaction and the hydrophobic interaction between the substituent of amino acids and reversed phase, $C_18$.