• Title/Summary/Keyword: Ligand-docking

Search Result 94, Processing Time 0.025 seconds

Consideration of the entropic effect in protein-ligand docking using colony energy (콜로니 에너지를 이용한 단백질-리간드 결합 문제에서의 엔트로피 효과 계산)

  • Lee, Ju-Yong;Seok, Cha-Ok
    • Bioinformatics and Biosystems
    • /
    • v.1 no.2
    • /
    • pp.103-108
    • /
    • 2006
  • Computational prediction of protein-ligand binding has been widely used as a tool to discover lead compounds fur new drugs. Prediction accuracy is determined in part by the scoring function used in docking calculations. Diverse scoring functions are available, and these can be classified into force-field based, empirical, and knowledge-based functions depending upon the basic assumptions made in development. Among these, force-field based functions consider physical interactions the most in detail. However, the force-field based functions have the drawback of not including the entropic effect while considering only the energy contribution such as dispersion or electrostatic forces. In this article, a method to take into account of the entropic effect using the colony energy is suggested when force-field based scoring functions is used by extracting conformational information obtained from the pre-existing docking program. An improved result for decoy discrimination is illustrated when the method is applied to the DOCK scoring function, and this implies that more accurate docking calculation is possible.

  • PDF

Using reverse docking to identify potential targets for ginsenosides

  • Park, Kichul;Cho, Art E.
    • Journal of Ginseng Research
    • /
    • v.41 no.4
    • /
    • pp.534-539
    • /
    • 2017
  • Background: Ginsenosides are the main ingredients of ginseng, which, in traditional Eastern medicine, has been claimed to have therapeutic values for many diseases. In order to verify the effects of ginseng that have been empirically observed, we utilized the reverse docking method to screen for target proteins that are linked to specific diseases. Methods: We constructed a target protein database including 1,078 proteins associated with various kinds of diseases, based on the Potential Drug Target Database, with an added list of kinase proteins. We screened 26 kinds of ginsenosides of this target protein database using docking. Results: We found four potential target proteins for ginsenosides, based on docking scores. Implications of these "hit" targets are discussed. From this screening, we also found four targets linked to possible side effects and toxicities, based on docking scores. Conclusion: Our method and results can be helpful for finding new targets and developing new drugs from natural products.

Docking and Quantum Mechanics-Guided CoMFA Analysis of b-RAF Inhibitors

  • Muddassar, M.;Pasha, F. A.;Yoo, Kyung-Ho;Lee, So-Ha;Cho, Seung-Joo
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.8
    • /
    • pp.1499-1504
    • /
    • 2008
  • Pyrazine derivatives bind to b-RAF receptor which is important in cancer therapy. The ligand-receptor interactions have been studied by comparative molecular field analysis (CoMFA) and molecular docking methods. Applying conventional ligand-based alignment schemes for the whole set was not successful. However, QM and DFT results suggested that some ligands have electrostatic interaction while others have steric interactions. On the basis of these results, we divided the dataset into two subsets. Electrostatic effect was found to be important in one set while steric effect for the other. Best docking modes were obtained for each subset based on the available crystal structure. These receptor-guided CoMFA models propose an interesting possibility which is difficult to obtain otherwise. i.e., in one binding mode the electrostatic interaction plays a key role for one subset ($q^2$ = 0.46, $r^2$ = 0.98), while in another binding mode steric effect is important with another subset ($q^2$ = 0.43, $r^2$ = 0.74).

Computational Analysis of Human Chemokine Receptor Type 6

  • Sridharan, Sindhiya;Saifullah, Ayesha Zainab;Nagarajan, Santhosh Kumar;Madhavan, Thirumurthy
    • Journal of Integrative Natural Science
    • /
    • v.11 no.2
    • /
    • pp.121-129
    • /
    • 2018
  • CXCR6 is a major target in drug design as it is a determinant receptor in many diseases like AIDS, Type I Diabetes, some cancer types, atherosclerosis, tumor formation, liver disease and steatohepatitis. In this study, we propose the active site residues of CXCR6 molecule. We employed homology modelling and molecular docking approach to generate the 3D structure for CXCR6 and to explore its interaction between the antagonists and agonists. 3D models were generated using 14 different templates having high sequence identity with CXCR6. Surflex docking studies using pyridine and pyrimidine derivatives enabled the analysis of the binding site and finding of the important residues involved in binding. 3D structure of CXCL16, a natural ligand for CXCR6, was modelled using PHYRE and protein - protein docking was performed using ClusPro. The residues which were found to be crucial in interaction with the ligand are THR110, PHE113, TYR114, GLN160, GLN195, CYS251 and SER255. This study can be used as a guide for therapeutic studies of human CXCR6.

Cyclooxygenase-2 Inhibitor Parecoxib Was Disclosed as a PPAR-γ Agonist by In Silico and In Vitro Assay

  • Xiao, Bin;Li, Dan-dan;Wang, Ying;Kim, Eun La;Zhao, Na;Jin, Shang-Wu;Bai, Dong-Hao;Sun, Li-Dong;Jung, Jee H.
    • Biomolecules & Therapeutics
    • /
    • v.29 no.5
    • /
    • pp.519-526
    • /
    • 2021
  • In a search for effective PPAR-γ agonists, 110 clinical drugs were screened via molecular docking, and 9 drugs, including parecoxib, were selected for subsequent biological evaluation. Molecular docking of parecoxib to the ligand-binding domain of PPAR-γ showed high binding affinity and relevant binding conformation compared with the PPAR-γ ligand/antidiabetic drug rosiglitazone. Per the docking result, parecoxib showed the best PPAR-γ transactivation in Ac2F rat liver cells. Further docking simulation and a luciferase assay suggested parecoxib would be a selective (and partial) PPAR-γ agonist. PPAR-γ activation by parecoxib induced adipocyte differentiation in 3T3-L1 murine preadipocytes. Parecoxib promoted adipogenesis in a dose-dependent manner and enhanced the expression of adipogenesis transcription factors PPAR-γ, C/EBPα, and C/EBPβ. These data indicated that parecoxib might be utilized as a partial PPAR-γ agonist for drug repositioning study.

Molecular Docking Analysis of Protein Phosphatase 1D (PPM1D) Receptor with SL-175, SL-176 and CDC5L

  • Madhavan, Thirumurthy
    • Journal of Integrative Natural Science
    • /
    • v.11 no.1
    • /
    • pp.25-29
    • /
    • 2018
  • Protein phosphatase manganese dependent 1D (PPM1D), a Ser/Thr protein phosphatise, play major role in the cancer tumorigenesis of various tumors including neuroblastoma, pancreatic adenocarcinoma, medulloblastoma, breast cancer, prostate cancer and ovarian cancer. Hence, analysis on the structural features required for the formation of PPM1D-inhibitor complex becomes essential. In this study, we have performed molecular docking of SL-175 and -176 and protein-protein docking of CDC5L with PPM1D. On analysing the docked complexes, we have identified the important residues involved in the formation of protein-ligand complex. Research concentrating on these residues could be helpful in understanding the pathophysiology of various tumors related to PPM1D.

Docking and Virtual Screening Studies for New Leads of Boar Salivary Lipocalin

  • Sung, Nack-Do;Park, Chang-Sik;Park, Hyung-Yeon;Kim, Chan-Kyung
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.5
    • /
    • pp.959-962
    • /
    • 2008
  • We have performed FlexX docking experiments to predict the best docking poses of 5-androst-16-en-3-ol or 5-androst-16-en-3-one to Boar salivary lipocalin (SAL). Since no steroids were found inside of the binding pocket of the X-ray structure of 1GM6, we tried to find docking structures after opening the pocket using the random tweak option implemented in SYBYL. This operation allowed the ligand to enter the pocket. The best poses generated from FlexX were different from the structures reported earlier, which calculated docking poses by manual docking followed by minimization. Analysis of docking poses allowed us to identify pharmacophores. From this information, virtual screening experiments using UNITY were performed. Among six candidates, 3-(3,7-dimethyloct-6-enylamino)propane-1,2-diol (Leadquest code name: 5755) was chosen for further development. Future work will involve synthesis of some derivatives of 5755 and biological experiments if any derivatives can control the biostimulation and improve reproductive efficiency in pigs.

Facile Docking and Scoring Studies of Carborane Ligands with Estrogen Receptor

  • Ok, Kiwon;Jung, Yong Woo;Jee, Jun-Goo;Byun, Youngjoo
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.4
    • /
    • pp.1051-1054
    • /
    • 2013
  • Closo-carborane has been considered as an efficient boron-carrier for boron neutron capture therapy (BNCT) and an attractive surrogate of lipophilic phenyl or cyclohexyl ring in drug design. Despite a great number of carborane-containing ligands have been synthesized and evaluated, molecular modeling studies of carborane ligands with macromolecules have been rarely reported. We herein describe a facile docking and scoring-function strategy of 16 carborane ligands with an estrogen receptor by using the commercial Gaussian, Chem3D Pro and Discovery Studio (DS) computational programs. Docked poses of the carborane ligands in silico exhibited similar binding modes to that of the crystal ligand in the active site of estrogen receptor. Score analysis of the best docked pose for each ligand indicated that the Ligscore1 and the Dockscore have a moderate correlation with in vitro biological activity. This is the first report on the scoring-correlation studies of carborane ligands with macromolecules. The integrated Gaussian-DS approach has a potential application for virtual screening, De novo design, and optimization of carborane ligands in medicinal chemistry.

Efficiency of Lamarckian Genetic Algorithm in Molecular Docking of Phenylaminopyrimidine (PAP) Derivatives: A Retrospect Study

  • Ratilla, Eva Marie A.;Juan, Amor A. San
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2004.11a
    • /
    • pp.203-209
    • /
    • 2004
  • Molecular docking using Lamarckian genetic algorithm of AutoDock 3.0 (AD3) was employed to understand in retrospect the selectivity of phenylaminopyrimidine (PAP) derivatives against the kinase domain c-Abl, implicated in chronic myelogenous leukemia (CML). The energetics of protein-ligand complex was scored using AD3 to identify active drug conformations while Ligplot and ligand protein contact (LPC) programs were used to probe schematic molecular recognition of the bound inhibitor to the protein. Results signify correlation between model and crystal structures of STI-571 compound or Imatinib (IM), a PAP derivative and now clinically proven for its efficacy in CML. A prospect active form Abl inhibitor scaffold from matlystatin class of compounds will be published elsewhere.

  • PDF

3D Computational Modeling of Human P-gp NBD2 with Papyriferic Acid Derivatives

  • Gadhe, Changdev G.
    • Journal of Integrative Natural Science
    • /
    • v.5 no.3
    • /
    • pp.190-194
    • /
    • 2012
  • Human P-gp is one of the protein responsible for the multidrug resistance (MDR) develpment. MDR is a major cause of the cancer chemotherapy. In this paper, we performed homology modeling, docking study of papayriferic acid into the P-gp nucleotide binding domain (NBD2). For human P-gp, X-ray crystal structure is not known yet. We developed homology model for human NBD2 using HlyB ABC transporter structure (PDB code: 1XEF, resolution 2.5 ${\AA}$). Docking study was performed using Autodock. Docking result was analyzed, which shows that ligand docks into steroid binding site and interacts through hydrophobic and hydrophilic interactions.