Acknowledgement
This research was supported by a 2-year grant from Pusan National University. We thank Hye Lim Byun and Sunwoo Yu for their sincere assistance in molecular docking calculations.
References
- Bagi, Z., Erdei, N., Papp, Z., Edes, I. and Koller, A. (2006) Up-regulation of vascular cyclooxygenase-2 in diabetes mellitus. Pharmacol. Rep. 58, 52-56.
- Berger, J. and Moller, D. E. (2002) The mechanisms of action of PPARs. Annu. Rev. Med. 53, 409-435. https://doi.org/10.1146/annurev.med.53.082901.104018
- Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N. and Bourne, P. E. (2000) The protein data bank. Nucleic Acids Res. 28, 235-242. https://doi.org/10.1093/nar/28.1.235
- Bian, Y. Y., Wang, L. C., Qian, W. W., Lin, J., Jin, J., Peng, H. M. and Weng, X. S. (2018) Role of parecoxib sodium in the multimodal analgesia after total knee arthroplasty: a randomized double-blinded controlled trial. Orthop. Surg. 10, 321-327. https://doi.org/10.1111/os.12410
- Camp, H. S., Ren, D. and Leff, T. (2002) Adipogenesis and fat-cell function in obesity and diabetes. Trends Mol. Med. 8, 442-447. https://doi.org/10.1016/S1471-4914(02)02396-1
- Chao, L., Marcus-Samuels, B., Mason, M. M., Moitra, J., Vinson, C., Arioglu, E., Gavrilova, O. and Reitman, M. L. (2000) Adipose tissue is required for the antidiabetic, but not for the hypolipidemic, effect of thiazolidinediones. J. Clin. Invest. 106, 1221-1228. https://doi.org/10.1172/JCI11245
- Cobb, J. E., Blanchard, S. G., Boswell, E. G., Brown, K. K., Charifson, P. S., Cooper, J. P., Collins, J. L., Dezube, M., Henke, B. R., HullRyde, E. A., Lake, D. H., Lenhard, J. M., Oliver, W., Jr., Oplinger, J., Pentti, M., Parks, D. J., Plunket, K. D. and Tong, W. Q. (1998) N-(2-benzoylphenyl)-l-tyrosine PPARγ agonists. 3. Structure-activity relationship and optimization of the N-aryl substituent. J. Med. Chem. 41, 5055-5069. https://doi.org/10.1021/jm980414r
- Collins, J. L., Blanchard, S. G., Boswell, G. E., Charifson, P. S., Cobb, J. E., Henke, B. R., Hull-Ryde, E. A., Kazmierski, W. M., Lake, D. H., Leesnitzer, L. M., Lehmann, J., Lenhard, J. M., Orband-Miller, L. A., Gray-Nunez, Y., Parks, D. J., Plunkett, K. D. and Tong, W. Q. (1998) N-(2-benzoylphenyl)-l-tyrosine PPARγ agonists. 2. Structure-activity relationship and optimization of the phenyl alkyl ether moiety. J. Med. Chem. 41, 5037-5054. https://doi.org/10.1021/jm980413z
- Elte, J. W. F. and Blickle, J. F. (2007) Thiazolidinediones for the treatment of type 2 diabetes. Eur. J. Intern. Med. 18, 18-25. https://doi.org/10.1016/j.ejim.2006.09.007
- Eom, S. H., Liu, S., Su, M., Noh, T. H., Hong, J., Kim, N. D., Chung, H. Y., Yang, M. H. and Jung, J. H. (2016) Synthesis of phthalimide derivatives as potential PPAR-γ ligands. Mar. Drugs 14, 112. https://doi.org/10.3390/md14060112
- Evans, R. M., Barish, G. D. and Wang, Y. X. (2004) PPARs and the complex journey to obesity. Nat. Med. 10, 355-361. https://doi.org/10.1038/nm1025
- Forman, B. M., Tontonoz, P., Chen, J., Brun, R. P., Spiegelman, B. M. and Evans, R. M. (1995) 15-Deoxy-Δ12, 14-prostaglandin J2 is a ligand for the adipocyte determination factor PPARγ. Cell 83, 803-812. https://doi.org/10.1016/0092-8674(95)90193-0
- Fujita, H., Kakei, M., Fujishima, H., Morii, T., Yamada, Y., Qi, Z. and Breyer, M. D. (2007) Effect of selective cyclooxygenase-2 (cox2) inhibitor treatment on glucose-stimulated insulin secretion in c57bl/6 mice. Biochem. Biophys. Res. Commun. 363, 37-43. https://doi.org/10.1016/j.bbrc.2007.08.090
- Henke, B. R., Blanchard, S. G., Brackeen, M. F., Brown, K. K., Cobb, J. E., Collins, J. L., Harrington, W. W., Jr., Hashim, M. A., Hull-Ryde, E. A., Kaldor, I., Kliewer, S. A., Lake, D. H., Leesnitzer, L. M., Lehmann, J. M., Lenhard, J. M., Orband-Miller, L. A., Miller, J. F., Mook, R. A., Jr., Noble, S. A., Oliver, W., Jr., Parks, D. J., Plunket, K. D., Szewczyk, J. R. and Willson, T. M. (1998) N-(2-benzoylphenyl)-L-tyrosine PPARγ agonists. 1. Discovery of a novel series of potent antihyperglycemic and antihyperlipidemic agents. J. Med. Chem. 41, 5020-5036. https://doi.org/10.1021/jm9804127
- Higgins, L. S. and Mantzoros, C. S. (2008) The development of INT131 as a selective PPARγ modulator: approach to a safer insulin sensitizer. PPAR Res. 2008, 936906. https://doi.org/10.1155/2008/936906
- Huang, S., Hu, H., Cai, Y.-H. and Hua, F. (2019) Effect of parecoxib in the treatment of postoperative cognitive dysfunction: a systematic review and meta-analysis. Medicine 98, e13812. https://doi.org/10.1097/MD.0000000000013812
- Hu, Y., Stumpfe, D. and Bajorath, J. (2017) Recent advances in scaffold hopping. J. Med. Chem. 60, 1238-1246. https://doi.org/10.1021/acs.jmedchem.6b01437
- Jiang, T., Shi, X., Yan, Z., Wang, X. and Gun, S. (2019) Isoimperatorin enhances 3T3-L1 preadipocyte differentiation by regulating PPARγ and C/EBPα through the Akt signaling pathway. Exp. Ther. Med. 18, 2160-2166.
- Khanna-Gupta, A., Abayasekara, N., Levine, M., Sun, H., Virgilio, M., Nia, N., Halene, S., Sportoletti, P., Jeong, J.-Y., Pandolfi, P. P. and Berliner, N. (2012) Up-regulation of translation eukaryotic initiation factor 4E in nucleophosmin 1 haploinsufficient cells results in changes in CCAAT enhancer-binding protein α activity: implications in myelodysplastic syndrome and acute myeloid leukemia. J. Biol. Chem. 287, 32728-32737. https://doi.org/10.1074/jbc.M112.373274
- Krey, G., Braissant, O., L'Horset, F., Kalkhoven, E., Perroud, M., Parker, M. G. and Wahli, W. (1997) Fatty acids, eicosanoids, and hypolipidemic agents identified as ligands of peroxisome proliferator-activated receptors by coactivator-dependent receptor ligand assay. Mol Endocrinol. 11, 779-791. https://doi.org/10.1210/mend.11.6.0007
- Kroker, A. J. and Bruning, J. B. (2015) Review of the structural and dynamic mechanisms of pparγ partial agonism. PPAR Res. 2015, 816856. https://doi.org/10.1155/2015/816856
- Leonardini, A., Laviola, L., Perrini, S., Natalicchio, A. and Giorgino, F. (2009) Cross-talk between PPARgamma and insulin signaling and modulation of insulin sensitivity. PPAR Res. 2009, 818945. https://doi.org/10.1155/2009/818945
- Lipinski, C. A., Lombardo, F., Dominy, B. W. and Feeney, P. J. (1997) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 23, 3-25. https://doi.org/10.1016/S0169-409X(96)00423-1
- Liu, C., Feng, T., Zhu, N., Liu, P., Han, X., Chen, M., Wang, X., Li, N., Li, Y., Xu, Y. and Si, S. (2015) Identification of a novel selective agonist of PPARγ with no promotion of adipogenesis and less inhibition of osteoblastogenesis. Sci. Rep. 5, 9530. https://doi.org/10.1038/srep09530
- Mangelsdorf, D. J., Thummel, C., Beato, M., Herrlich, P., Schutz, G., Umesono, K., Blumberg, B., Kastner, P., Mark, M., Chambon, P. and Evans, R. M. (1995) The nuclear receptor superfamily: the second decade. Cell 83, 835-839. https://doi.org/10.1016/0092-8674(95)90199-X
- Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S. and Olson, A. J. (2009) AutoDock4 and AutoDock-Tools4: automated docking with selective receptor flexibility. J. Comput. Chem. 30, 2785-2791. https://doi.org/10.1002/jcc.21256
- Motoshima, K., Ishikawa, M., Hashimoto, Y. and Sugita, K. (2011) Peroxisome proliferator-activated receptor agonists with phenethylphenylphthalimide skeleton derived from thalidomide-related liver X receptor antagonists: relationship between absolute configuration and subtype selectivity. Bioorg. Med. Chem. 19, 3156-3172. https://doi.org/10.1016/j.bmc.2011.03.065
- Nolte, R. T., Wisely, G. B., Westin, S., Cobb, J. E., Lambert, M. H., Kurokawa, R., Rosenfeld, M. G., Willson, T. M., Glass, C. K. and Milburn, M. V. (1998) Ligand binding and co-activator assembly of the peroxisome proliferator-activated receptor-γ. Nature 395, 137-143. https://doi.org/10.1038/25931
- Petersen, R. K., Christensen, K. B., Assimopoulou, A. N., Frette, X., Papageorgiou, V. P., Kristiansen, K. and Kouskoumvekaki, I. (2011) Pharmacophore-driven identification of PPARγ agonists from natural sources. J. Comput. Aided Mol. Des. 25, 107-116. https://doi.org/10.1007/s10822-010-9398-5
- Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C. and Ferrin, T. E. (2004) UCSF Chimera-a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605-1612. https://doi.org/10.1002/jcc.20084
- Sanner, M. F. (1999) Python: a programming language for software integration and development. J. Mol. Graph. Model. 17, 57-61.
- Semple, R. K., Chatterjee, V. K. K. and O'Rahilly, S. (2006) PPARγ and human metabolic disease. J. Clin. Invest. 116, 581-589. https://doi.org/10.1172/JCI28003
- Smith, U. and Kahn, B. B. (2016) Adipose tissue regulates insulin sensitivity: role of adipogenesis, de novo lipogenesis and novel lipids. J. Intern. Med. 280, 465-475. https://doi.org/10.1111/joim.12540
- Su, M., Cao, J., Huang, J., Liu, S., Im, D. S., Yoo, J.-W. and Jung, J. H. (2017) The in vitro and in vivo anti-inflammatory effects of a phthalimide PPAR-γ agonist. Mar. Drugs 15, 7. https://doi.org/10.3390/md15010007
- Trott, O. and Olson, A. J. (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31, 455-461. https://doi.org/10.1002/jcc.21334
- Waku, T., Shiraki, T., Oyama, T. and Morikawa, K. (2009) Atomic structure of mutant PPARγ LBD complexed with 15d-PGJ2: novel modulation mechanism of PPARγ/RXRα function by covalently bound ligands. FEBS Lett. 583, 320-324. https://doi.org/10.1016/j.febslet.2008.12.017
- Wang, L., Waltenberger, B., Pferschy-Wenzig, E.-M., Blunder, M., Liu, X., Malainer, C., Blazevic, T., Schwaiger, S., Rollinger, J. M., Heiss, E. H., Schuster, D., Kopp, B., Bauer, R., Stuppner, H., Dirsch, V. M. and Atanasov, A. G. (2014) Natural product agonists of peroxisome proliferator-activated receptor gamma (PPARγ): a review. Biochem. Pharmacol. 92, 73-89. https://doi.org/10.1016/j.bcp.2014.07.018
- Wang, Q., Imam, M. U., Yida, Z. and Wang, F. (2017) Peroxisome proliferator-activated receptor gamma (PPARγ) as a target for concurrent management of diabetes and obesity-related cancer. Curr. Pharm. Des. 23, 3677-3688.
- Wang, Y., Chen, Z., Li, J. and Shi, J. (2019) Parecoxib improves the cognitive function of POCD rats via attenuating COX-2. Eur. Rev. Med. Pharmacol. Sci. 23, 4971-4979.
- Willson, T. M., Lambert, M. H. and Kliewer, S. A. (2001) Peroxisome proliferator-activated receptor γ and metabolic disease. Annu. Rev. Biochem. 70, 341-367. https://doi.org/10.1146/annurev.biochem.70.1.341
- Younce, C. W., Azfer, A. and Kolattukudy, P. E. (2009) MCP-1 (monocyte chemotactic protein-1)-induced protein, a recently identified zinc finger protein, induces adipogenesis in 3T3-L1 pre-adipocytes without peroxisome proliferator-activated receptor γ. J. Biol. Chem. 284, 27620-27628. https://doi.org/10.1074/jbc.M109.025320
Cited by
- Neuroprotective Effect of Cyclo-(L-Pro-L-Phe) Isolated from the Jellyfish-Derived Fungus Aspergillus flavus vol.19, pp.8, 2021, https://doi.org/10.3390/md19080417