• Title/Summary/Keyword: Lifetime effective dose

Search Result 19, Processing Time 0.03 seconds

Assessment of the Effective Dose to the Human Body and Estimation of Lifetime Attributable Risk by CT Examination (CT 검사별 노출되는 유효선량과 생애 암 귀속 위험도 평가)

  • Cho, Yong In;Kim, Jung Hoon
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.2
    • /
    • pp.169-178
    • /
    • 2020
  • The number of CT scans is increasing every year due to the improvement of the medical standards of the public, and thus the annual dose of medical radiation is also increasing. In this study, we evaluated the effective dose of the human body exposed to CT scans and estimated LAR. First, five region were selected from the CT diagnostic reference level guideline, and the effective dose of human body exposed to each examination was evaluated by clinical CT device. Second, the human organs and effective dose were calculated using the ALARA-CT program under the same conditions. Third, lifetime attributable risk (LAR) estimated by the effective dose exposed through the previous CT scan was estimated. As a result, the most effective dose was 21.18 mSv during the abdomen 4 phase scan, and the dose level was below DRL for all other tests except for the abdominal examination. As a result of evaluating effective dose using a dose calculation program under the same conditions, the results showed about 1.1 to 1.9 times higher results for each examination. In the case of organ dose, the closer the organ to the scan site, the higher the scattering ray. The lifetime attributable risk to CT radiation dose in adults was gradually decreased with age, and the results were somewhat different according to gender.

Determination of indoor doses and excess lifetime cancer risks caused by building materials containing natural radionuclides in Malaysia

  • Abdullahi, Shittu;Ismail, Aznan Fazli;Samat, Supian
    • Nuclear Engineering and Technology
    • /
    • v.51 no.1
    • /
    • pp.325-336
    • /
    • 2019
  • The activity concentrations of $^{226}Ra$, $^{232}Th$, and $^{40}K$ from 102 building materials samples were determined using a high-purity germanium (HPGe) detector. The activity concentrations were evaluated for possible radiological hazards to the human health. The excess lifetime cancer risks (ELCR) were also estimated, and the average values were recorded as $0.42{\pm}0.24{\times}10^{-3}$, $3.22{\pm}1.83{\times}10^{-3}$, and $3.65{\pm}1.85{\times}10^{-3}$ for outdoor, indoor, and total ELCR respectively. The activity concentrations were further subjected to RESRAD-BUILD computer code to evaluate the long-term radiation exposure to a dweller. The indoor doses were assessed from zero up to 70 years. The simulation results were $92{\pm}59$, $689{\pm}566$, and $782{\pm}569{\mu}Sv\;y^{-1}$ for indoor external, internal, and total effective dose equivalent (TEDE) respectively. The results reported were all below the recommended maximum values. Therefore, the radiological hazards attributed to building materials under study are negligible.

Prediction for the Lifetime Effective Dose and Radon Exposure Risk by using Dose Conversion Convention: Base on the Indoor Radon Concentration of Lecture Room in a University (선량 환산 관례를 이용한 생애유효선량 및 라돈피폭 위험도 예측: 대학 강의실 라돈농도 중심으로)

  • Lee, Jae-Seung;Kweon, Dae Cheol
    • Journal of Biomedical Engineering Research
    • /
    • v.39 no.6
    • /
    • pp.243-249
    • /
    • 2018
  • The indoor radon concentration was measured in the lecture room of the university and the radon concentration was converted to the amount related to the radon exposure using the dose conversion convention and compared with the reference levels for the radon concentration control. The effect of indoor radon inhalation was evaluated by estimating the life effective dose and the risk of exposure. To measure the radon concentration, measurements were made with a radon meter and a dedicated analysis Capture Ver. 5.5 program in a university lecture room from January to February 2018. The radon concentration measurement was carried out for 5 consecutive hours for 24 hours after keeping the airtight condition for 12 hours before the measurement. Radon exposure risk was calculated using the radon dose and dose conversion factor. Indoor radon concentration, radon exposure risk, and annual effective dose were found within the 95% confidence interval as the minimum and maximum boundary ranges. The radon concentration in the lecture room was $43.1-79.1Bq/m^3$, and the maximum boundary range within the 95% confidence interval was $77.7Bq/m^3$. The annual effective dose was estimated to be 0.20-0.36 mSv/y (mean 0.28 mSv/y). The life-time effective dose was estimated to be 0.66-1.18 mSv (mean $0.93{\pm}0.08mSv$). Life effective doses were estimated to be 0.88-0.99 mSv and radon exposure risk was estimated to be 12.4 out of 10.9 per 100,000. Radon concentration was measured, dose effective dose was evaluated using dose conversion convention, and degree of health hazard by indoor radon exposure was evaluated by predicting radon exposure risk using nominal hazard coefficient. It was concluded that indoor living environment could be applied to other specific exposure situations.

Radiation dose and Lifetime Attributable Risk of Cancer Estimates in 64-slice Multidetector Computed Tomography (64-절편 다행검출 CT 검사에서의 환자선량과 암 발생의 Lifetime Attributable Risk(LAR) 평가)

  • Kang, Yeong-Han;Park, Jong-Sam
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.4
    • /
    • pp.244-252
    • /
    • 2011
  • This study was to estimate the radiation dose associated with 64-slice multidetector CT(MDCT) in clinical practice and quantify the potential cancer risk associated with these examinations. Lifetime attributable risks(LAR) were estimated with models developed in the national Academies' Biological Effects of Ionizing Radiation VII report. Mean effective dose were 1.48mSv in Brain axial scan, 7.66mSv in chest routine contrast, 12.17mSv in coronary angiogram, 24.52mSv in Dynamic abdomen scan. LAR estimates for brain routine varied from 1 in 7463 for man to 1 in 4926 for women. In chest routine with contrast, LAR varied from 1 in 1449 for men to 1 in 952. LAR of Abdomen dynamic CT varied from 1 in 453 for men to 1 in 298 for women. So, 64-slice MDCT scan is associated with non-negligible LAR of cancer. Doses can be reduced by careful attention to scanning protocol.

Dose Reduction Effect by using Compression Band during Chest CT Examination in Female Patients (여성의 흉부 CT 검사 시 압박밴드 사용에 따른 선량 감소효과)

  • Kim, In Soo;Cho, Yong In
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.4
    • /
    • pp.445-453
    • /
    • 2021
  • CT scan is reported to have a high risk of cancer due to a relatively high dose among medical radiological examinations. In particular, exposure to radiation to the breast, which is sensitive to radiation, is inevitable during a chest CT scan for female patient. In this study, the dose reduction effect of wearing a compression band during chest CT scans in women was evaluated, and the lifetime attributable risk due to the effective dose exposed during the CT scan was estimated. As a result, when the compression band was used, the effective tube current decreased as the outer perimeter of the chest became smaller, and it was analyzed that the CT dose index and effective dose were also reduced. In addition, the lifetime attributable risk by chest CT scan was found to reduce the cancer risk by 3.2 per 100,000 for all cancers, 0.2 per 100,000 for solid cancer, and 0.8 per 100,000 for breast cancer, based on women in their 30s when using a compression band. It is judged that the risk of cancer can be reduced through the use of appropriate scan parameters and dose optimization measures such as compression bands for future CT examinations.

Radiation Dose and Estimate of Lifetime Attributable Risk of Cancer from Coronary Angiography and Percutaneous Coronary Intervention (관상동맥조영술과 경피적관상동맥중재술에서 환자 선량과 암 발생 생애귀속위험 평가)

  • Kang, Yeong-Han;Kim, Bu-Sun;Park, Jong-Sam
    • Journal of radiological science and technology
    • /
    • v.33 no.3
    • /
    • pp.213-221
    • /
    • 2010
  • The Purpose of this study was to determine the effective dose to an average patient from Coronary Angiography (CA) and Percutaneous Coronary Intervention (PCI). And to estimate the lifetime attributable risk (LAR) of cancer associated with radiation exposure from CA and PCI. The dose-area product (DAP) values to the patient were recorded from 60 CA and 58 PCI. A Monte Carlo based program PCXMC was used to calculate the effective dose from DAP values for each patient. Lifetime attributable risks were estimated with models developed in the National Academies' Biological Effects of Ionizing Radiation VII report. The mean DAP values was $53.76\;Gy{\cdot}cm^2$ for CA and $165.82\;Gy{\cdot}cm^2$ for PCI. Mean effective dose were 1.28 mSv in CA, 3.94 mSv in PCI. Results of Calculate organ dose, lung doses was 2.17 mSv in CA and 6.71 mSv in PCI. Female breast doses was 5.45 mSv in CA and 16.82 mSv in PCI. LAR estimates for CA varied from 1 in 1,508 for man to 1 in 1,357 for women. In PCI procedure varied from 1 in 553 for man to 1 in 482 for women. DAP can be used as the dose indicator to calculate the organ dose and effective dose of patient based on Monte Carlo simulation. These dose estimates derived from our simulation models suggest that CA and PCI are associated with a nonnegligible LAR of cancer. This risk varies markedly and is considerably greater for women, PCI than for man, CA.

Natural radioactivity level in fly ash samples and radiological hazard at the landfill area of the coal-fired power plant complex, Vietnam

  • Loan, Truong Thi Hong;Ba, Vu Ngoc;Thien, Bui Ngoc
    • Nuclear Engineering and Technology
    • /
    • v.54 no.4
    • /
    • pp.1431-1438
    • /
    • 2022
  • In this study, natural radioactivity concentrations and dosimetric values of fly ash samples were evaluated for the landfill area of the coal-fired power plant (CFPP) complex at Binh Thuan, Vietnam. The average activity concentrations of 238U, 226Ra, 232Th and 40K were 93, 77, 92 and 938 Bq kg-1, respectively. The average results for radon dose, indoor external, internal, and total effective dose equivalent (TEDE) were 5.27, 1.22, 0.16, and 6.65 mSv y-1, respectively. The average emanation fraction for fly ash were 0.028. The excess lifetime cancer risks (ELCR) were recorded as 20.30×10-3, 4.26×10-3, 0.62×10-3, and 25.61×10-3 for radon, indoor, outdoor exposures, and total ELCR, respectively. The results indicated that the cover of shielding materials above the landfill area significantly decreased the gamma radiation from the ash and slag in the ascending order: Zeolite < PVC < Soil < Concrete. Total dose of all radionuclides in the landfill site reached its peak at 19.8 years. The obtained data are useful for evaluation of radiation safety when fly ash is used for building material as well as the radiation risk and the overload of the landfill area from operation of these plants for population and workers.

Effective Radiologic Doses and Lifetime Attributable Risks in Patients with Trauma Critical Pathway Activation (중증외상환자의 전산화단층촬영 및 중재술에 의한 방사선 유효선량 및 생애 귀속위험도)

  • Lee, Wonhyo;Kong, Taeyoung;Kim, Seunghwan;You, Je Sung;Park, Yoo Seok;Lee, Jae Gil;Chung, Sung Phil
    • Journal of Trauma and Injury
    • /
    • v.26 no.3
    • /
    • pp.198-206
    • /
    • 2013
  • Purpose: This study was performed to calculate and analyze the effective radiation doses from computed tomography (CT) and radiologic intervention in patients in the emergency department (ED) with trauma critical pathway (CP) activation and further to estimate the lifetime attributable risks (LARs) for the incidence of and mortality from cancers induced by the radiation dose. Methods: Through a retrospective electrical chart review of 104 injured patients who trauma critical pathway were activated from November 2012 to March 2013, we calculated effective radiologic doses by taking the product of the dose-linear product of the scan and the conversion coefficient. After a determination of the image results, we divided the patients into two groups, negative or positive, and calculated the effective dose for each group. With these results, we estimated the LARs for the incidence of and the mortality from cancers by using the table in the Biologic Effects of Ionizing Radiation (BEIR)-VII report. Results: A total of 76 patients were enrolled. The mean age was $49.0{\pm}8.5$ years. The mean injury severity score (ISS) was $12.7{\pm}8.4$. The cumulative effective dose (CED) for individual patients varied from 2.8 mSv to 238.8 mSv, and the mean was $47.6{\pm}39.9$ mSv. The CED in patients with an $ISS{\geq}16$($63.2{\pm}26.6$ mSv) was higher than that of patients whose ISS<16($33.5{\pm}23.1$ mSv) (p<0.001). The CED in patients who were treated with surgery or intervention($69.0{\pm}45.2$ mSv) was higher than that of patients who were treated conservatively($33.6{\pm}22.4$ mSv) (p<0.001). The LARs for cancer incidence and mortality were $328.5{\pm}308.6$ and $189.0{\pm}159.3$ per 100,000 people, respectively. Conclusion: The CED and the LAR for trauma CP-activated patients in the ED were significant, so efforts should be made to decrease the effective dose received by severely injured patients.

Comparison of Radiation Doses between 64-slice Single Source and 128-slice Dual Source CT Coronary Angiography in patient (64-slice single source CT와 128-slice dual source CT를 이용한 관상동맥 조영 검사 시 환자선량 비교)

  • Kang, Yeong-Han
    • Journal of the Korean Society of Radiology
    • /
    • v.6 no.2
    • /
    • pp.129-136
    • /
    • 2012
  • The purpose of this study was to estimate radiation doses from 64-slice single source Computed Tomography(SSCT) coronary angiography(CA) and 128-slice dual source Computed Tomography(DSCT). With SSCT CA, the effective dose averaged approximately 13.86 mSv when two dose modulation was not. The mean effective dose for DSCT CA with retrospectively gated helical(RGH) technique was 11.87 mSv, when prospective ECG gating transverse(PGT) without dose modulation technique was 5.61 mSv. The one with dose modulation in PGT technique and flash mode were 3.04 mSv and flash mode was 0.98 mSv respectively. The lifetime attributable risk(LAR) of cancer incidence from SSCT RGH mode averaged approximately 1 for 1,176, and DSCT averaged 1 for 1,960(RGH mode), 1 for 3,030(PGT without modulation), 1 for 5,882(PGT with modulation). Because of CTCA is associated with non-negligible risk of cancer. Doses can be reduced by application PGT, FLASH than RGH using DSCT.

Radionuclide concentrations in agricultural soil and lifetime cancer risk due to gamma radioactivity in district Swabi, KPK, Pakistan

  • Umair Azeem;Hannan Younis;Niamat ullah;Khurram Mehboob;Muhammad Ajaz;Mushtaq Ali;Abdullah Hidayat;Wazir Muhammad
    • Nuclear Engineering and Technology
    • /
    • v.56 no.1
    • /
    • pp.207-215
    • /
    • 2024
  • This study focuses on measuring the levels of naturally occurring radioactivity in the soil of Swabi, Khyber Pakhtunkhwa, Pakistan, as well as the associated health hazard. Thirty (30) soil samples were collected from various locations and analyzed for 226Ra, 232Th, and 40K radioactivity levels using a High Purity Germanium detector (HPGe) gamma-ray spectrometer with a photo-peak efficiency of approximately 52.3%. The average values obtained for these radionuclides are 35.6 ± 5.7 Bqkg-1, 47 ± 12.5 Bqkg-1, and 877 ± 153 Bqkg-1, respectively. The level of 232Th is slightly higher and 40K is 2.2 times higher than the internationally recommended limit of 30 Bqkg-1 and 400 Bqkg-1, respectively. Various parameters were calculated based on the results obtained, including Radium Equivalent (Raeq), External Hazard (Hex), Absorbed Dose Rate (D), Annual Gonadal Equivalent Dose (AGDE), Annual Effective Dose Rate, and Excess Lifetime Cancer Risk (ELCR), which are 170.3 ± 24 Bqkg-1, 0.46 ± 0.06 Bqkg-1, 81.4 ± 2.04 nGy h-1, 582 ± 78.08 µSvy-1, 99.8 ± 13.5 µSv Gy-1, and 0.349 ± 0.04, respectively. These values are below the limits recommended by the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) in 2002. This study highlights the potential radiation threats associated with natural radioactivity levels in the soil of Swabi and provides valuable information for public health and safety.