• Title/Summary/Keyword: Lifetime Extension

Search Result 81, Processing Time 0.024 seconds

On-Site Corrosion Behavior of Water-Treated Boiler Tube Steel

  • Seo, Junghwa;Choi, Mihwa;He, Yinsheng;Yang, Seok-Ran;Lee, Je-Hyun;Shin, Keesam
    • Applied Microscopy
    • /
    • v.45 no.3
    • /
    • pp.177-182
    • /
    • 2015
  • The boiler tubes of X20CrMoV12.1 used in fossil-fired power plants were obtained and analyzed for the effect of water treatment on the steam corrosion-induced oxide scale in an effort to better understand the oxide formation mechanism, as well as pertinent method of maintenance and lifetime extension. The specimens were analyzed using various microscopy and microanalysis techniques, with focuses on the effect of water treatment on the characters of scale. X-ray diffraction analysis showed that the scales of specimens were composed of hematite ($Fe_2O_3$), magnetite ($Fe_3O_4$), and chromite ($FeCr_2O_4$). Electron backscatter diffraction analysis showed that the oxides were present in the following order on the matrix: outer $Fe_2O_3$, intermediate $Fe_3O_4$, and inner $FeCr_2O_4$. After all volatile treatment or oxygenated treatment, a dense protective $Fe_2O_3$ layer was formed on the $Fe_3O_4$ layer of the specimen, retarding further progression of corrosion.

Effects of Thermal Oxidation on Corrosion Resistance of Stainless Steels for Muffler Materials (머플러용 스테인리스강의 내식성에 미치는 열적 산화의 영향)

  • Kim, Dongwoo;Kim, Heesan
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.10
    • /
    • pp.652-661
    • /
    • 2008
  • Reduction of NOx in emission gas, improvement of engine efficiency, and extension of warranty period has made demands for developing materials more corrosively resistant to the inner-muffler environments or predicting the lifetime of materials used in muffler more precisely. The corrosion inside muffler has been explained with condensate corrosion mainly though thermal oxidation experiences prior to condensate corrosion. Hence, the aim of this study is to describe how the thermal oxidation affects the corrosion of stainless steel exposed to the inner-muffler environments. Auger electron spectroscopy and electrochemical tests were employed to analyze oxide scale and to evaluate corrosion resistance, respectively. Thermal oxidation has different role of condensate corrosion depending on the temperature: inhibiting condensate corrosion below $380^{\circ}C$ and enhancing condensate corrosion above $380^{\circ}C$. The low temperature oxidation causes to form compact oxide layer functioning a barrier for penetrating condensate into a matrix. Although though thermal oxidation caused chromium-depleted layer between oxide layer and matrix, the enhancement of the condensate corrosion in high temperature oxidation resulted from corrosion-induced crevice formed by oxide scale rather than corrosion in chromium-depleted layer. It was proved by aids of anodic polarization tests and measurements of pitting corrosion potentials. By the study, the role of high temperature oxidation layer affecting the condensate corrosion of stainless steels used as muffler materials was well understood.

Relationship between Attenuation of Impact Shock at High Frequency and Flexion-Extension of the Lower Extremity Joints during Downhill Running

  • Ryu, Ji-Seon;Yoon, Suk-Hoon;Park, Sang-Kyoon
    • Korean Journal of Applied Biomechanics
    • /
    • v.26 no.2
    • /
    • pp.167-174
    • /
    • 2016
  • Objective: The purpose of this study was to determine the interrelationship between ranges of motion of the knee and ankle joints on the sagittal plane and the attenuation magnitude of impact shock at high frequency (9~20 Hz) in the support phase during downhill running. Method: Fifteen male heel-toe runners with no history of lower extremity injuries were recruited for this study (age, $25.07{\pm}5.35years$; height, $175.4{\pm}4.6cm$; mass, $75.8{\pm}.70kg$). Two uniaxial accelerometers were mounted to the tuberosity of tibia and sacrum, respectively, to measure acceleration signals. The participants were asked to run at their preferred running speed on a treadmill set at $0^{\circ}$, $7^{\circ}$, and $15^{\circ}$ downhill. Six optical cameras were placed around the treadmill to capture the coordinates of the joints of the lower extremities. The power spectrum densities of the two acceleration signals were analyzed and used in the transfer function describing the gain and attenuation of impact shock between the tibia and the sacrum. Angles of the knee and ankle joints on the sagittal plane and their angle ranges were calculated. The Pearson correlation coefficient was used to test the relationship between two variables, the magnitude of impact shock, and the range of joint angle under three downhill conditions. The alpha level was set at .05. Results: Close correlations were observed between the knee joint range of motion and the attenuation magnitude of impact shock regardless of running slopes (p<.05), and positive correlations were found between the ranges of motion of the knee and ankle joints and the attenuation magnitude of impact shock in $15^{\circ}$ downhill running (p<.05). Conclusion: In conclusion, increased knee flexion might be required to attenuate impact shock during downhill and level running through change in stride or cadence while maintaining stability, and strong and flexible ankle joints are also needed in steeper downhill running.

Congestion Control based on Genetic Algorithm in Wireless Sensor Network (무선 센서 네트워크에서 유전자 알고리즘 기반의 혼잡 제어)

  • Park, Chong-Myung;Lee, Joa-Hyoung;Jung, In-Bum
    • Journal of KIISE:Information Networking
    • /
    • v.36 no.5
    • /
    • pp.413-424
    • /
    • 2009
  • Wireless sensor network is based on an event driven system. Sensor nodes collect the events in surrounding environment and the sensing data are relayed into a sink node. In particular, when events are detected, the data sensing periods are likely to be shorter to get the more correct information. However, this operation causes the traffic congestion on the sensor nodes located in a routing path. Since the traffic congestion generates the data queue overflows in sensor nodes, the important information about events could be missed. In addition, since the battery energy of sensor nodes exhausts quickly for treating the traffic congestion, the entire lifetime of wireless sensor networks would be abbreviated. In this paper, a new congestion control method is proposed on the basis of genetic algorithm. To apply genetic algorithm, the data traffic rate of each sensor node is utilized as a chromosome structure. The fitness function of genetic algorithm is designed from both the average and the standard deviation of the traffic rates of sensor nodes. Based on dominant gene sets, the proposed method selects the optimal data forwarding sensor nodes for relieving the traffic congestion. In experiments, when compared with other methods to handle the traffic congestion, the proposed method shows the efficient data transmissions due to much less queue overflows and supports the fair data transmission between all sensor nodes as possible. This result not only enhances the reliability of data transmission but also distributes the energy consumptions across the network. It contributes directly to the extension of total lifetime of wireless sensor networks.

Flowering Control by Using Red Light of Chrysanthemum (적색광을 이용한 국화의 개화조절)

  • Hong, Seung-Chang;Kwon, Soon-Ik;Kim, Min-Kyeong;Chae, Mi-Jin;Jung, Goo-Bok;So, Kyu-Ho
    • Korean Journal of Environmental Agriculture
    • /
    • v.32 no.2
    • /
    • pp.123-127
    • /
    • 2013
  • BACKGROUND: The incandescent bulb and compact fluorescent lamp are widely using as a light sources for daylength extension of chrysanthemum. But, these light sources consume a lot of electricity and have short longevity. A light-emitting diode (LED) is a semi conductor light source. LEDs have many advantages over incandescent light sources including lower energy consumption, longer lifetime. In this study, we investigated the intensity of red light to control flowering of chrysanthemum (Dendranthema grandiflorum cv. "Shinma") by using LEDs. METHODS AND RESULTS: The red (660 nm) and far-red (730 nm) light were irradiated subsequently to investigate photo-reversible flowering responses of chrysanthemum. The flowering of chrysanthemum was inhibited by night interruption with red light but subsequently irradiated far-red light induced the flowering of chrysanthemum. This photoreversibility, reversion of the inductive effect of a brief red light pulse by a subsequent far-red light pulse, is a property of photo responses regulated by the plant photoreceptor phytochrome B. Four different intensity of red light of 0.7, 1.4, 2.1, and $2.8{\mu}mol/m^2/s$ (PAR) were irradiated at growth room in order to determine the threshold for floral inhibition of chrysanthemum. Over $1.4{\mu}mol/m^2/s$ of the red lights irradiated chrysanthemums were not flowered. The plant length, fresh weight, number of leaves, and leaf area of chrysanthemum irradiated with red light were increased by 17%, 36%, 11%, and 48%, respectively, compared to those of compact fluorescent lamp. CONCLUSION(S): The red light and subsequential far-red light showed that the photoreversibility on flowering of chrysanthemum. The red light ($1.4{\mu}mol/m^2/s$ of red LEDs) and white light (50 Lux of compact fluorescent lamp) have the same effect on inhibition of flowering in chrysanthemum. Additionally, the red light increased the plant height and dry weight of chrysanthemum.

Adhesion and Lifetime Extension Properties of Electrical Conductive Paint Stored under of Nitrogen Atmosphere (질소환경에서 보관된 전기전도성 페인트의 접착 및 수명연장 특성)

  • Shin, Pyeong-Su;Kim, Jong-Hyun;Baek, Yeong-Min;Park, Ha-Seung;Park, Joung-Man
    • Journal of Adhesion and Interface
    • /
    • v.20 no.1
    • /
    • pp.9-14
    • /
    • 2019
  • The change of three different reagents for electrical conductive paint using aircraft coating with elapsing time of exposure to different condition was investigated. Three different reagents were poured into the vial bottles, stored in air condition and room temperature and observed with elapsing days. In addition, adhesion property of paint was tried using cross cut tape test after storage of $N_2$ atmosphere. The weight of each different reagent was measured along with elapsing time. To confirm the change of chemical component with exposure of air atmosphere, FT-IR was performed. The weight of part A and Part B decreased slightly whereas the weight of part C decreased rapidly and the precipitation was remained. The part B was cured after exposure of $N_2$ atmosphere and the 2250 cm-1 from FT-IR peak decreased slowly at the same time. It was considered that the water contained in air accelerated the reaction of -NCO functional groups and it caused the curing whereas $N_2$ atmosphere not contained water and it resulted in the retardancy of curing.

Location Based Load Balancing Method for Cluster Routing in Wireless Sensor Networks (무선 센서 네트워크의 클러스터 라우팅에서 위치기반 부하 균등화 기법)

  • Yoo, Woo Sung;Kang, Sang Hyuk
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.8
    • /
    • pp.942-949
    • /
    • 2016
  • Efficient routing protocols designed for Wireless Sensor Networks (WSN) can be extended and applied to Internet of Things (IoT) data routing, as IoT can be considered to be an extension from WSN. When the size of the data in IoT is often bigger than in conventional WSNs, existing cluster routing protocol such as LEACH may cause high data loss rate due to its incomplete load balancing. We present an enhanced LEACH-based protocol which can minimize the data loss which is an important performance measure in IoT. In our proposed protocol, the base station estimates the location of nodes by the trilateration technique to make sure optimal number of cluster heads and members in a deterministic manner. We evaluate our proposed protocol via computer simulations in terms of data loss rate and average network lifetime.

Development of a purifying system to separate minute solid particles and water in oil (오일 속 미세입자 및 수분분리를 위한 청정기 시스템 개발)

  • Kim, Yong-Keun;Choi, Yoon-Hwan;Moon, Myung-Jun;Lee, Yeon-Won
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.41 no.1
    • /
    • pp.44-49
    • /
    • 2017
  • In this research, a purifying system using a centrifugal filter equipped with a water separation component has been studied. Oil utilized for lubrication and cooling in marine engines becomes unable to achieve its original purpose over time as the accumulation of solid particles and water increases. Therefore, methods applying the Bernoulli equation to eliminate water in oil were investigated and proposed. As a result, a practical purifying system was designed and tested by an officially certified organization. The new purifying system is anticipated to contribute to the extension of the lifetime of oil in addition to damage reduction methods of mechanical parts.

An Energy-Efficient Clustering Protocol Based on The Cross-Layer Design in Wireless Sensor Networks (무선 센서 네트워크에서 크로스 레이어 기반의 에너지 효율적인 클러스터링 프로토콜)

  • Kim, Tae-Kon;Lee, Hyung-Keun
    • Journal of IKEEE
    • /
    • v.11 no.4
    • /
    • pp.165-170
    • /
    • 2007
  • The main goal of research concerning clustering protocols is to minimize the energy consumption of each node and maximize the network lifetime of wireless sensor networks. However, most existing clustering protocols mainly focused on the design and formation of clusters, leaving the consideration of communication between the cluster head and the sink behind. In this paper, we propose efficient multi path routing algorithm by using MAC-NET Cross-layering. multi path needed only one tiny packet from sink to setup. In addition proposed algorithm can be used for any cluster-based hierarchical inter-clustering routing algorithm. The simulation results demonstrate that proposed algorithm extended the overall survival time of the network by reducing the load of cluster heads. The performance of proposed algorithm is less affected by the extension of sensing field than other inter-clustering operation.

  • PDF

Novel Erbium(III)-Encapsulated Complexes Based on ${\pi}$-Extended Anthracene Ligands Bearing G3-Aryl-Ether Dendron: Synthesis and Photophysical Studies

  • Baek, Nam-Seob;Kim, Yong-Hee;Roh, Soo-Gyun;Lee, Dong-Hyun;Seo, Kang-Deuk;Kim, Hwan-Kyu
    • Macromolecular Research
    • /
    • v.17 no.9
    • /
    • pp.672-681
    • /
    • 2009
  • A series of inert and photo-stable Er(III)-encapsulated complexes based on ${\pi}$-extended dendritic anthracene ligands bearing G3-aryl-ether dendron ([G3-AnX]-$CO_2H$), which retain different ${\pi}$-bridging systems, such as single (X= S), double (X= D) and triple (X= T) bonds was designed and synthesized to establish the structure-property relationship. The near infrared emission intensities of Er(III)-encapsulated complexes were enhanced dramatically by increasing the ${\pi}$-conjugated extension of anthracene ligands. The time-resolved luminescence spectra show monoexponential decays with a lifetime of $2.0{\sim}2.4ms$ for $Er^{3+}$ ions in thin films, and calculated intrinsic quantum yields of $Er^{3+}$ ions are in the range of $0.025{\sim}0.03%$. As a result, all Er(III)-encapsulated dendrimer complexes exhibit the near IR emission with the following order: $Er^{3+}-[G3-AnD]_3$(terpy) > $Er^{3+}-[G3-AnS]_3$(terpy) ${\approx}$ $Er^{3+}-[G3-AnT]_3$(terpy), because $Er^{3+}-[G3-AnD]_3$(terpy) has a higher relatively spectral overlap J value and energy transfer efficiency. In addition, the lack of detectable phosphorescence and no significant spectral dependence of the ${\pi}$-extended anthracene moieties on the solvent polarity support energy transfer from their singlet state to the central $Er^{3+}$ ion taking place in $Er^{3+}-[G3-AnX]_3$(terpy).