• Title/Summary/Keyword: Lifeline

Search Result 67, Processing Time 0.023 seconds

Visualization Technology of GIS Associated with Seismic Fragility Analysis of Buried Pipelines in the Domestic Urban Area (국내 도심지 매설가스배관의 지진취약도 분석 연계 GIS 정보 가시화 기술)

  • Lee, Jinhyuk;Cha, Kyunghwa;Song, Sangguen;Kong, Jung Sik
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.2
    • /
    • pp.177-185
    • /
    • 2015
  • City-based Lifeline is expected to cause significant social and economic loss accompanied the secondary damage such as paralysis of urban functions and a large fire as well as the collapse caused by earthquake. Earthquake Disaster Response System of Korea is being operated with preparation, calculates the probability of failure of the facility through Seismic Fragility Model and evaluates the degree of earthquake disaster. In this paper, the time history analysis of buried gas pipeline in city-based lifeline was performed with consideration for ground characteristics and also seismic fragility model was developed by maximum likelihood estimation method. Analysis model was selected as the high-pressure pipe and the normal-pressure pipe buried in the city of Seoul, Korea's representative, modeling of soil was used for Winkler foundation model. Also, method to apply developed fragility model at GIS is presented.

The Lightweight and the Self-escape Function Development of the SRL (SRL의 경량화 및 자가탈출기능 개발)

  • Kim, Sang Tae;Kwon, Oh Heon;Kang, Ji Woong
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.6
    • /
    • pp.15-21
    • /
    • 2014
  • Many kinds of falling prevention systems with a safety block have been supplied in order to prevent falling accidents and acquire the long life and cost down for the maintenance. However, there are not the reliable and domestic the falling prevention system until now. Almost systems were imported from U.S.A, Japan, U.K and Germany. The structural safety of the imported safety block is satisfied sufficiently, but it has heavy weight due to the cover with the aluminum and thickness. Especially, the falling prevention system as the safety block is very expensive. It brings about flow the enormous money out of country. Furthermore it has a heavy weight when workers climbed the ladder with a falling prevention system and moved, many workers are not feeling themselves. Thus, the aim of this work is to develop a commercial self-escape SRL(Self Retracting Lifeline) with the safety block function that has a light weight and an advanced strength. The cost efficiency and convenience of the system and safety for workers also will be improved remarkably even though this system has a light weight. The results show that the maximum stress is obtained in each part by the lower more than yield strength and has sufficient safety in the developed new safety block.

A Methodology to Quantifying Benefit for Implementing Smart-Pipe to Lifeline Systems (라이프라인의 Smart-Pipe 시스템 도입을 위한 이익정량화 방안)

  • Jun, Hwan-Don;Kim, Joong-Hoon;Cho, Moon-Soo;Baek, Chun-Woo;Yoo, Do-Guen
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.4
    • /
    • pp.61-66
    • /
    • 2008
  • As the water distribution system which is one of the critical lifeline system is deteriorated and pipe failures occur frequently, the more efficient pipe monitoring system becomes a critical issue in the water industry. One of the pipe monitoring systems is called "Smart-pipe System" which is permanent, comprehensive and an automated SIM (Structural Integrity Monitoring) system and has superiorities to existing monitoring system. To implement a smart-pipe system on a water distribution system, assessment of its indirect benefit obtaining from smartpipe such as the ratio of preventing water main failures must be preceded. However, only some researches on this field have been performed. In this paper, the concept of smart-pipe system is compared with the current monitoring systems for a water distribution system, and a method to quantify its benefit using the inconvenient time for customers is suggested. The suggested method was applied to a real water distribution system to estimate its applicability and benefit.

Study on Correlation between Large Earthquake-Induced Underground Structure Uplift and Geological Settings (대지진에 의한 지하구조물 부상과 지질학적 특성의 상관성 연구)

  • Kang, Gi-Chun;Kim, Ji-Seong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.15 no.4
    • /
    • pp.9-16
    • /
    • 2016
  • During the 2004 Niigata-ken Chuetsu, Japan, earthquake, more than 1,450 underground structures, known as sewer manhole, were uplifted up to 1.5m in Nagaoka and Ojiya city. The uplift damage can be a serious matter because they not only hinder the flow of wastewater systems, as a part of lifeline systems, but also disturb traffic flows. For restoration works, an open-cut investigation of damaged wastewater system was conducted by the Nagaoka city government. The results from the investigation compiled valuable data sets for buried pipeline damage due to earthquakes. In the present study, the factors affecting the uplift amount of the underground structure is investigated by using the data sets which include locations of damaged sections and inclination of pipeline before and after the earthquake and the SPT borehole logs in the affected area. Correlation analysis between the underground structure uplift and the geological settings in the affected area revealed that ground water depth and original subsoil, including thickness of clay layer, SPT N-value and fill thickness are the key parameters for the uplift phenomenon.

A review on vibration-based structural pipeline health monitoring method for seismic response (지진 재해 대응을 위한 진동 기반 구조적 관로 상태 감시 시스템에 대한 고찰)

  • Shin, Dong-Hyup;Lee, Jeung-Hoon;Jang, Yongsun;Jung, Donghwi;Park, Hee-Deung;Ahn, Chang-Hoon;Byun, Yuck-Kun;Kim, Young-Jun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.35 no.5
    • /
    • pp.335-349
    • /
    • 2021
  • As the frequency of seismic disasters in Korea has increased rapidly since 2016, interest in systematic maintenance and crisis response technologies for structures has been increasing. A data-based leading management system of Lifeline facilities is important for rapid disaster response. In particular, the water supply network, one of the major Lifeline facilities, must be operated by a systematic maintenance and emergency response system for stable water supply. As one of the methods for this, the importance of the structural health monitoring(SHM) technology has emerged as the recent continuous development of sensor and signal processing technology. Among the various types of SHM, because all machines generate vibration, research and application on the efficiency of a vibration-based SHM are expanding. This paper reviews a vibration-based pipeline SHM system for seismic disaster response of water supply pipelines including types of vibration sensors, the current status of vibration signal processing technology and domestic major research on structural pipeline health monitoring, additionally with application plan for existing pipeline operation system.

A Study on the Design of Digital Twin System and Required Function for Underground Lifelines (지하공동구 디지털 트윈 체계 및 요구기능 설계에 관한 연구)

  • Jeong, Min-Woo;Lee, Hee-Seok;Shin, Dong-Bin
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.7
    • /
    • pp.248-258
    • /
    • 2021
  • 24-hour monitoring is required to maintain the city's lifeline function in the underground facility for public utilities. And it is necessary to develop technology to exchange the shortage of human resources. It is difficult to reflect the specificity of underground space management in general management methods. This study proposes underground facility for public utilities digital twin system requirements. The concept of space is divided into physical space and virtual space, and the physical space constitutes the type and layout of the sensor that is the basis for the construction of the multimodal image sensor system, and the virtual space constitutes the system architecture. It also suggested system functions according to the task. It will be effective in preventing disasters and maintaining the lifeline function of the city through the digital twins.

Seismic Landslide Hazard Maps in Ul-Ju Ul-san Korea (지진에 대한 사면의 재해위험지도 작성 - 울산시 울주군 지역을 중심으로-)

  • 조성원
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.04a
    • /
    • pp.89-96
    • /
    • 2000
  • Landslide damage comprise most part of the damages from the earthquake and it only causes the damage to lives and structures directly but also cease the operation of social system by road or lifeline failure. For these reasons hazard assesment on the landslides has been recognized very important. And hazard maps have been used to visualize the hazard of the landslide. In this study as first step for application of hazard map to domestic cases hazard maps are made for the Ul-Joo Ul-san Korea, Where the Yan-san faults are located. For building hazard maps the degree of hazard are evaluated based on Newmark displacement and the resulting maps are constructed by GIS technique. In hazard assesment maximum ground acceleration obtained from attenuation equation of wave propagation and design earthquake acceleration suggested by Ministry of construction are used for acceleration term. Hazard maps are made by GIS programs Arc/Info and Arc/View based on the digital maps and data from lab tests and elastic wave surveys The maps show the possible landslide regions significantly and the displacements of slide are proportional to the slope angles.

  • PDF

Innovations for Sustainability: A Case of Mainstreaming Energy Access in Rural India

  • Patil, Balachandra
    • Asian Journal of Innovation and Policy
    • /
    • v.4 no.2
    • /
    • pp.154-177
    • /
    • 2015
  • India faces a formidable challenge in ensuring security of access to modern energy carriers to majority of its population. The fossil-fuel dominated centralized energy system has proved to be ineffective in creating sustainable access to energy, which suggests need for a radical and innovative approach. We present such an approach. First, the need for innovations given the implications of lack of energy access on sustainable development is assessed. Next, possible innovations with respect to technologies, policies, institutions, markets, financial instruments and business models are discussed. Finally, an economic and financial feasibility of implementing such innovations are analyzed. The results indicate that such a proposal needs an investment of US$ 26.2 billion over a period of 20 years for a GHG mitigation potential of 213Tg $CO_{2e}$. The proposition is profitable for the enterprises with IRRs in the range of 39%-66%. The households will get lifeline access to electricity and gas for cooking at an affordable monthly cost of about US$ 5.7.

Seismic Scenario Simulation and Its Applications on Risk Management in Taiwan

  • Yeh, Chin-Hsun
    • 한국방재학회:학술대회논문집
    • /
    • 2009.02b
    • /
    • pp.13-24
    • /
    • 2009
  • This paper introduces various kinds of applications of the scenario-based seismic risk assessment in Taiwan. Seismic scenario simulation (SSS) is a GIS-based technique to assess distribution of ground shaking intensity, soil liquefaction probability, building damages and associated casualties, interruption of lifeline systems, economic losses, etc. given source parameters of an earthquake. The SSS may integrate with rapid earthquake information release system to obtain valuable information and to assist in decision-making processes to dispatch rescue and medical resources efficiently. The SSS may also integrate with probabilistic seismic hazard analysis to evaluate various kinds of risk estimates, such as average annual loss and probable maximum loss in one event, in a probabilistic sense and to help proposing feasible countermeasures.

  • PDF

Study on The Estimation of Pipeline.Soil Interaction Force during Longitudinal Permanent Ground Deformation (종방향 영구지반변형 발생시 관.지반 상호작용력의 산정에 관한 연구)

  • 김태욱;임윤묵;김문겸
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.09a
    • /
    • pp.114-122
    • /
    • 2002
  • The ASCE formula of lifeline.soil interaction force is the basis of semi-analytical relationship for buried pipelines subjected to longitudinal permanent ground deformation due to seismic induced liquefaction. However, since the ASCE formula has been developed based on the stiffness of non-liquefied region, it is needed to modify for the varied stiffness of liquefied region. With this object, the consideration of decreasing effect of soil stiffness in liquefied region is made: i.e. the spatial distributions of pipeline-soil interaction force in liquefied region. It means that the improved formula can reflect various patterns of permanent ground deformation more realistically. Through the comparative analyses using both the improved and ASCE formula, the applicability of the improved and the limitation of the ASCE formula and semi-analytical relationship are discussed. Also, relative influences of various parameters are evaluated for the clarification of behavior of pipeline subjected to longitudinal permanent ground deformation due to liquefaction.

  • PDF