• Title/Summary/Keyword: Life-cycle assessment

Search Result 724, Processing Time 0.031 seconds

An Analysis of Permanantly Shaded Areas and the Defect Rate of Landscape Trees in Apartment Complexes Using Daylight Simulations

  • Park, Sang Wook
    • Journal of People, Plants, and Environment
    • /
    • v.23 no.3
    • /
    • pp.333-345
    • /
    • 2020
  • Background and objective: The purpose of this study was to provide basic data on trees that can be used for planting design and construction for permanently shaded areas by grasping the growth status of trees according to the daylight conditions of the outdoor spaces of apartment complexes. Methods: On the recently completed apartment complexes, daylight conditions were analyzed by using daylight simulations utilizing Solar Access Analysis of Ecotect Analysis. With a criteria for assessment of tree condition, the defect rate of trees planted in permanently shaded areas and green spaces with good daylight conditions was analyzed to suggest trees applicable to permanently shaded areas. The first tree survey was conducted from November 18, 2019 to February 15, 2020, focusing on trees planted in permanently shaded areas, and the second tree survey of all the trees planted on the study sites including permanently shaded areas was conducted from March 16 to March 30, 2020. Results: Evergreen trees which are classified as shade intolerant trees including Pinus densiflora, Thuja occidentalis, and Abies holophylla showed a higher defect rate of trees among the trees planted in permanently shaded areas. Taxus cuspidata, Zelkova serrata, Cornus kousa, Chionanthus retusus and Acer palmatum which are classified as shade tolerant trees and shade moderate tolerance trees seemed to be able to be used in the plant design of permanently shaded areas in apartment complexes because the trees showed good growth and a low tree defect rate. In addition, although it was excluded from the analysis due to a small number of samples, Sorbus commixta and Prunus cerasifera var. atropurpurea also can be used for planting in permanently shaded areas. Conclusion: The daylight simulation technique used to analyze permanent shaded areas in this study can be used as an analysis tool considering the daylight environment at the stages of design and construction, and additional research will be required to analyze tree growth according to daylight conditions through data accumulation and monitoring by managing records throughout the entire life cycle of trees in the process of planting and maintenance.

An Analysis of Greenhouse Gas Reduction effect of Automotive Engine Re-manufacturing throug Whole Process Analysis (전과정 분석을 통한 자동차엔진 재제조시 온실가스 저감효과 분석)

  • Ji-Hyoung Park;Han-Sol Lee;Yong-Woo Hwang;Young-Chun Kim;Chung-geun Lee
    • Resources Recycling
    • /
    • v.32 no.2
    • /
    • pp.43-51
    • /
    • 2023
  • In this research, through LCA analysis, the environmental impact of automotive engine manufacturing and re-manufacturing was analyzed from the perspective of the entire process, and the greenhouse gas reduction effect was calculated based on this. The amount of greenhouse gas emitted from the process of acquiring and manufacturing raw materials for automotive engines is about 3,473 kg for new manufacturing and 872 kg for re-manufacturing. Thus, the amount of greenhouse gas reduction by engaging in re-manufacturing is about 2,601 kg; the analysis shows a reduction effect in each part of the entire process except for the processing stage. As a result of the LCA weighted analysis, the environmental impact of new product manufacturing was found to be 1.07E+03 Eco-point, and it was 2.67E+02 Eco-point for re-manufacturing. The share of GWP(Global Warming Potential) among the six major impact categories(Abiotic Depletion Potential, Acidification Potential, Eutrophication Potential, Global Warming Potential, Ozone-layer Depletion Potential, Photochemical Oxidant Creation Potential) as high at 99.72%(new manufacturing) and 99.68%(re-manufacturing).

Low Carbonization Technology & Traceability for Sustainable Textile Materials (지속가능 섬유 소재 추적성과 저탄소화 공정)

  • Min-ki Choi;Won-jun Kim;Myoung-hee Shim
    • Fashion & Textile Research Journal
    • /
    • v.25 no.6
    • /
    • pp.673-689
    • /
    • 2023
  • To realize the traceability of sustainable textile products, this study presents a low-carbon process through energy savings in the textile material manufacturing process. Traceability is becoming an important element of Life Cycle Assessment (LCA), which confirms the eco-friendliness of textile products as well as supply chain information. Textile products with complex manufacturing processes require traceability of each step of the process to calculate carbon emissions and power usage. Additionally, an understanding of the characteristics of the product planning-manufacturing-distribution process and an overall understanding of carbon emissions sources are required. Energy use in the textile material manufacturing stage produces the largest amount of carbon dioxide, and the amount of carbon emitted from processes such as dyeing, weaving and knitting can be calculated. Energy saving methods include efficiency improvement and energy recycling, and carbon dioxide emissions can be reduced through waste heat recovery, sensor-based smart systems, and replacement of old facilities. In the dyeing process, which uses a considerable amount of heat energy, LNG, steam can be saved by using "heat exchangers," "condensate management traps," and "tenter exhaust fan controllers." In weaving and knitting processes, which use a considerable amount of electrical energy, about 10- 20% of energy can be saved by using old compressors and motors.

Evaluation of Sustainable Plastic Management Strategy of Korean Consumer Goods Companies (국내 소비재 기업의 지속 가능한 플라스틱 경영 전략 평가를 위한 지표 개발)

  • Suho Han;Seongku Kwon;Junhee Park;Jeongki Lee;Jay Hyuk Rhee;Yongjun Sung;Sung Yeon Hwang;Yong Sik Ok
    • Journal of Environmental Science International
    • /
    • v.32 no.11
    • /
    • pp.745-756
    • /
    • 2023
  • Growing stringent global regulations in Korea poses a threat to corporate sustainability. Companies must respond strategically to navigate these regulations and avoid greenwashing. Objective of this research was to analyze how Korean companies are responding to the global trend of reducing plastic use and propose improved management strategies. Seven indicators were developed to assess companies' post-plastic strategies and applied to analyze the sustainability reports of Amore Pacific and LG Household & HealthCare. These indicators included, 1) disclosure of plastic raw materials used by weight or volume, 2) disclosure of recycled plastic raw materials used by weight or volume, 3) disclosure of waste recycling, reuse amounts, and disposal using waste treatment method 4) strategies to reduce environmental impact of plastics, 5) plastic packaging, reduce, recycle, reuse, and composting (in the real environment), 6) plastic management roadmap for the circular economy, and 7) education for sustainable plastic management. Based on the review of considered companies, we propose in-listed sustainable plastics management strategies: disclosing the ratio of plastic raw materials and recycled raw materials for all products, considering recycling rate throughout the product value chain, and not only for the production phase, reviewing carbon dioxide emissions based on life cycle assessment rather than reducing plastic consumption, studying the biodegradability of biodegradable plastics in natural environment such as soil, considering the consumer's perspective.

Comparison of Environmental Evaluation for Paper and Plastic Based Mask Packaging (종이 기반과 플라스틱 기반 보건마스크 패키징의 환경영향 비교)

  • Dongho Kang;Youjin Go;Sanghoon Oh;Gohyun Choo;Jisoo Jang;Junhyuk Lee;Jinkie Shim
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.30 no.1
    • /
    • pp.73-83
    • /
    • 2024
  • In this study, environmental evaluation of high barrier coated paper (coating layer/paper) packaging is conducted in comparison with conventional aluminum laminated (PET/VMPET/LLDPE) plastic packaging. The target product for this packaging is a KF94 mask, which requires a high barrier of water and oxygen to maintain the filtration ability of the mask filter. The functional unit of this study is 10,000 mask packaging materials based on a material capable of blocking oxygen (<1 g/m2day) and moisture (<3 g/m2day) for the preservation of KF94 masks. In order to understand the results easily, paper-based mask packaging system divided into 6 stages (pulp, pulping & paper making, calendaring & coating, printing, packing and waste management), while plastic-based mask packaging consists of 5 stages (material production, processing, printing, packing, waste management) In case of paper-based mask packaging, most contributing stage is calendaring & coating, resulting from heat and electricity production. On the other hand, plastic-based mask packaging is contributed more than 30% by material production, specifically due to linear low density polyethylene and purified terephthalic acid production. The comparison results show that global warming potential of paper-based mask packaging has 32% lower than that of plastic-based mask packaging. Most of other impact indicators revealed in similar trend.

Exploring sustainable packaging design (지속 가능한 포장 디자인 탐구)

  • AN BOWEN
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.4
    • /
    • pp.495-499
    • /
    • 2024
  • This article summarizes the importance, definition, key strategies and future directions of sustainable packaging design.In modern society, sustainable packaging design is not only concerned with environmental protection and resource conservation, but also involves economic, social and cultural sustainable development.This paper explores strategies to reduce environmental burden and promote ecological balance by using environmentally friendly materials, optimizing packaging design, improving packaging recyclability and reuse. In addition, the article emphasizes the importance of design innovation, such as adopting a simplified design concept and modular system, as well as increasing the versatility of packaging.It also explores the application of life cycle assessment in packaging design to ensure that every step from design to disposal minimizes environmental impact. Finally, despite the environmental and social benefits that sustainable packaging design brings, it still faces technical, economic and regulatory challenges in practice.Future design will require interdisciplinary collaboration, integration of advanced technologies, consumer education and engagement, and enhanced policy and standard-setting to promote widespread adoption and practice of sustainable packaging.

Estimation of Greenhouse Gas Emissions During the Construction of Jangbogo Antarctic Research Station (남극 장보고기지 건설 시 온실가스 배출량 산정)

  • Joo, Jin Chul;Yun, Jeongim;Lee, Seungeun;Kim, Yu-Min;Chae, Chang-U;Kim, YoungSeok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.4
    • /
    • pp.270-279
    • /
    • 2012
  • In this study, greenhouse gas emissions occurring from the construction of Jangbogo Antarctic research station were estimated in terms of material production stages and building stages, respectively. In detail, greenhouse gas emissions during the building stages were estimated in terms of marine transportation, inland transportation, construction equipment utilization, and construction camp operation, respectively. As a result, greenhouse gas emissions from material production stages with life cycle assessment were 8,933 ton (as $CO_{2eq}$), equivalent to the 23.8% of total greenhouse gas emissions from the construction of Jangbogo Antarctic research station, and these results indicate that greenhouse gas emissions occurring from material production stages should not be ignored. During the building stages, greenhouse gas emissions occurring from first year were greater than those from second year due to the increase in fuel consumption of freighter during second year. Additionally, marine transportation compared to inland transportation, construction equipment utilization, and construction camp operation was found to be the greater contributor for greenhouse gas emissions during the building stages. The total greenhouse gas emissions estimated from both material production stages and building stages was 34,486 ton (as $CO_{2eq}$), and greater than those estimated from comprehensive environmental evaluation (CEE) of existing other research stations. This difference is mainly attributed from approximate estimation of greenhouse gas emissions of existing other research stations without considering material production stages.

Development of Water Footprint Inventory Using Input-Output Analysis (산업연관분석을 활용한 물발자국 인벤토리 개발)

  • Kim, Young Deuk;Lee, Sang Hyun;Ono, Yuya;Lee, Sung Hee
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.4
    • /
    • pp.401-412
    • /
    • 2013
  • Water footprint of a product and service is the volume of freshwater used to produce the product, measured in the life cycle or over the full supply chain. Since water footprint assessment helps us to understand how human activities and products relate to water scarcity and pollution, it can contribute to seek a sustainable way of water use in the consumption perspective. For the introduction of WFP scheme, it is indispensable to construct water inventory/accounting for the assessment, but there is no database in Korea to cover all industry sectors. Therefore, the aim of the study is to develop water footprint inventory within a nation at 403 industrial sectors using Input-Output Analysis. Water uses in the agricultural sector account for 79% of total water, and industrial sector have higher indirect water at most sectors, which is accounting for 82%. Most of the crop water is consumptive and direct water except rice. The greatest water use in the agricultural sectors is in rice paddy followed by aquaculture and fruit production, but the greatest water use intensity was not in the rice. The greatest water use intensity was 103,263 $m^3$/million KRW for other inedible crop production, which was attributed to the low economic value of the product with great water consumption in the cultivation. The next was timber tract followed by iron ores, raw timber, aquaculture, water supply and miscellaneous cereals like corn and other edible crops in terms of total water use intensity. In holistic view, water management considering indirect water in the industrial sector, i.e. supply chain management in the whole life cycle, is important to increase water use efficiency, since more than 56% of total water was indirect water by humanity. It is expected that the water use intensity data can be used for a water inventory to estimate water footprint of a product for the introduction of water footprint scheme in Korea.

Analysis of Resource and GHG Reduction by Recycling Palladium in Plated Spent Catalyst Solution (도금폐촉매액내 팔라듐 재자원화에 따른 자원 및 온실가스 감축량 분석)

  • Shin, Ka-Young;Lee, Seong-You;Kang, Hong-Yoon
    • Resources Recycling
    • /
    • v.30 no.3
    • /
    • pp.47-54
    • /
    • 2021
  • Palladium present in colloidal-type plated spent catalyst solution that is used in electroless plating process has not been recovered but discharged as wastewater so far. Recyclig of paladium in colloidal-type plated spent catalyst solution is achieved with this study. This study presents the estimation of resource consumption and GHG emissions during the recycling and disposal of palladium in the plated spent catalyst solution using life cycle assessment. The reduction of resources and GHG are also estimated. Based on the palladium amount of 1 kg during disposal, the GHG emission amount was estimated to be 9.67E+03 kgCO2eq., and the amount of resource consumption was 3.94E+01 kgSb-eq. However, GHG emission was 1.96E+03 kgCO2eq., and the amount of resource consumption was 1.54E+01 kgSb-eq. during recycling. Considering the major substances affecting GHG emissions and amount of resource consumption, CO2 was found to significantly affect GHG emissions, accounting for 91.42% in disposal and 98.37% in recycling. The major substance affecting the amount of resource consumption was hard coal, which accounted for 40.63% in disposal and 60.73% in recycling. Upon recycling 1 kg palladium, 8,967.17 kgCO2eq. of greenhouse gas emission was reduced, while the resource consumption was reduced to 10.10 kg Sb-eq. In addition, the direct palladium resource reduction rate due to palladium recycling was 50%.

An exploration of the relationship between crime/victim characteristics and the victim's criminal damages: Variable selection based on random forest algorithm (범죄 및 피해자 특성과 범죄피해 내용의 관계 탐색: 랜덤포레스트 알고리즘에 기초한 변인선택)

  • Han, Yuhwa;Lee, Wooyeol
    • Korean Journal of Forensic Psychology
    • /
    • v.13 no.2
    • /
    • pp.121-145
    • /
    • 2022
  • The current study applied the random forest algorithm to Korean crime victim survey data collected biennially between 2010 and 2018 to explore the relationship between crime/victim characteristics and the victim's criminal damages. A total of 3,080 cases including gender, age (life cycle stage), type of crime, perpetrator acquisition, repeated victimization, psychological damage (depression, isolation, extreme fear, somatic symptoms, interpersonal problems, moving out to avoid people, suicidal impulses, suicide attempts), and emotional changes after victimization (changes in self-protection confidence, self-esteem, confidence in others, confidence in legal institutions, and respect for Korean legal system/law) were analyzed. Considering the features of data that are difficult to apply traditional statistical techniques, this study implemented random forest algorithms to predict crime and victim characteristics using the victim's criminal damages (psychological damage and emotional change) and selected good predictors using VSURF function in VSURF package for R. As a result of the analysis, it was confirmed that the relationship between the type of crime and depression, extreme fear, somatic symptoms, and interpersonal problems, between perpetrator acquisition and somatic symptoms and interpersonal problems, and between repeated victimization and changes in respect for Korean legal system/law. Gender and life cycle stage (youth/adult/elderly) were found to be related to extreme fear and changes in self-protection confidence, respectively. However, more empirical evidence should be aggregated to explain the results as meaningful. The results of this study suggest that it is necessary to enhance the experts' knowledge and educate them on cases about the relationship between crime/victim characteristics and criminal damage. Strengthening their interview strategy and knowledge about law/rules were also needed to increase the effectiveness of the Korean victim assessment system.