• Title/Summary/Keyword: Life-Time Prediction

Search Result 586, Processing Time 0.022 seconds

Collapse Probability of a Low-rise Piloti-type Building Considering Domestic Seismic Hazard (국내 지진재해도를 고려한 저층 필로티 건물의 붕괴 확률)

  • Kim, Dae-Hwan;Kim, Taewan;Chu, Yurim
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.20 no.7_spc
    • /
    • pp.485-494
    • /
    • 2016
  • The risk-based assessment, also called time-based assessment of structure is usually performed to provide seismic risk evaluation of a target structure for its entire life-cycle, e.g. 50 years. The prediction of collapse probability is the estimator in the risk-based assessment. While the risk-based assessment is the key in the performance-based earthquake engineering, its application is very limited because this evaluation method is very expensive in terms of simulation and computational efforts. So the evaluation database for many archetype structures usually serve as representative of the specific system. However, there is no such an assessment performed for building stocks in Korea. Consequently, the performance objective of current building code, KBC is not clear at least in a quantitative way. This shortcoming gives an unresolved issue to insurance industry, socio-economic impact, seismic safety policy in national and local governments. In this study, we evaluate the comprehensive seismic performance of an low-rise residential buildings with discontinuous structural walls, so called piloti-type structure which is commonly found in low-rise domestic building stocks. The collapse probability is obtained using the risk integral of a conditioned collapse capacity function and regression of current hazard curve. Based on this approach it is expected to provide a robust tool to seismic safety policy as well as seismic risk analysis such as Probable Maximum Loss (PML) commonly used in the insurance industry.

Experimental Performance Comparison for Prediction of Red Tide Phenomenon (적조현상의 실험적 예측성능 비교)

  • Heo, Won-Ji;Won, Jae-Kang;Jung, Yong-Gyu
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.49 no.2
    • /
    • pp.1-6
    • /
    • 2012
  • In recent years global climate change of hurricanes and torrential rains are going to significantly, that increase damages to property and human life. The disasters have been several claimed in every field. In future, climate changes blowing are keen to strike released to the world like in several movies. Reducing the damage of long-term weather phenomena are emerging with predicting changes in weather. In this study, it is shown how to predict the red tide phenomenon with multiple linear regression analysis and artificial neural network techniques. The red tide phenomenon causing risk could be reduced by filtering sensor data which are transmitted and forecasted in real time. It could be ubiquitous driven custom marine information service system, and forecasting techniques to use throughout the meteorological disasters to minimize damage.

Research about Choice Attribution Customers make in Food & Beverage Events (식음료 이벤트의 고객 선택속성에 관한 연구)

  • Park, Jong-Hun;Jin, Yang-Ho
    • Culinary science and hospitality research
    • /
    • v.10 no.1
    • /
    • pp.32-45
    • /
    • 2004
  • This study is about choice attribution of customers make in food and beverage events. The researcher provided practical plans to uplift food-related enterprises and activate management through surveys and positive analyses, targeting customers who use food services. First of all, all event plans must include customer demands, social changes, special qualities of the business, and market research. Second, low demand season must be customers will be induced to the events. Third, prediction for market variable and solutions must be thoroughly examined and plans should look into the future to maintain a long period of time. Fourth, sufficient communication between planners and employees should be made before the event starts, so that food and beverage businesses can gain trust and quality of event services.Fifth, immaterial service and visible goods/menus in business of food and beverage events must be closely matched. Sixth, menus introducing a variety of merchandise, quality of nutrition and health of the business should be developed. Also, events from countries(regions) should be hold to create a market of cultural exchange. Seventh, for hereafter event plans, feedbacks are needed concerning customers needs and demands through customer care, after the food and beverage events. Eight, faculty management for convenience, kindness, safety, and life preserver accommodations in parking areas must be made, as automobiles are necessaries for people in Mycar era. The ninth, off-line and on-line care through on-line business construction and production of homepage must be done, due to the fact that even the well-made events are bound to fail if they are not delivered to the customers.

  • PDF

Wireless sensor networks for permanent health monitoring of historic buildings

  • Zonta, Daniele;Wu, Huayong;Pozzi, Matteo;Zanon, Paolo;Ceriotti, Matteo;Mottola, Luca;Picco, Gian Pietro;Murphy, Amy L.;Guna, Stefan;Corra, Michele
    • Smart Structures and Systems
    • /
    • v.6 no.5_6
    • /
    • pp.595-618
    • /
    • 2010
  • This paper describes the application of a wireless sensor network to a 31 meter-tall medieval tower located in the city of Trento, Italy. The effort is motivated by preservation of the integrity of a set of frescoes decorating the room on the second floor, representing one of most important International Gothic artworks in Europe. The specific application demanded development of customized hardware and software. The wireless module selected as the core platform allows reliable wireless communication at low cost with a long service life. Sensors include accelerometers, deformation gauges, and thermometers. A multi-hop data collection protocol was applied in the software to improve the system's flexibility and scalability. The system has been operating since September 2008, and in recent months the data loss ratio was estimated as less than 0.01%. The data acquired so far are in agreement with the prediction resulting a priori from the 3-dimensional FEM. Based on these data a Bayesian updating procedure is employed to real-time estimate the probability of abnormal condition states. This first period of operation demonstrated the stability and reliability of the system, and its ability to recognize any possible occurrence of abnormal conditions that could jeopardize the integrity of the frescos.

Development and Validation of Generalized Linear Regression Models to Predict Vessel Enhancement on Coronary CT Angiography

  • Masuda, Takanori;Nakaura, Takeshi;Funama, Yoshinori;Sato, Tomoyasu;Higaki, Toru;Kiguchi, Masao;Matsumoto, Yoriaki;Yamashita, Yukari;Imada, Naoyuki;Awai, Kazuo
    • Korean Journal of Radiology
    • /
    • v.19 no.6
    • /
    • pp.1021-1030
    • /
    • 2018
  • Objective: We evaluated the effect of various patient characteristics and time-density curve (TDC)-factors on the test bolus-affected vessel enhancement on coronary computed tomography angiography (CCTA). We also assessed the value of generalized linear regression models (GLMs) for predicting enhancement on CCTA. Materials and Methods: We performed univariate and multivariate regression analysis to evaluate the effect of patient characteristics and to compare contrast enhancement per gram of iodine on test bolus (${\Delta}HUTEST$) and CCTA (${\Delta}HUCCTA$). We developed GLMs to predict ${\Delta}HUCCTA$. GLMs including independent variables were validated with 6-fold cross-validation using the correlation coefficient and Bland-Altman analysis. Results: In multivariate analysis, only total body weight (TBW) and ${\Delta}HUTEST$ maintained their independent predictive value (p < 0.001). In validation analysis, the highest correlation coefficient between ${\Delta}HUCCTA$ and the prediction values was seen in the GLM (r = 0.75), followed by TDC (r = 0.69) and TBW (r = 0.62). The lowest Bland-Altman limit of agreement was observed with GLM-3 (mean difference, $-0.0{\pm}5.1$ Hounsfield units/grams of iodine [HU/gI]; 95% confidence interval [CI], -10.1, 10.1), followed by ${\Delta}HUCCTA$ ($-0.0{\pm}5.9HU/gI$; 95% CI, -11.9, 11.9) and TBW ($1.1{\pm}6.2HU/gI$; 95% CI, -11.2, 13.4). Conclusion: We demonstrated that the patient's TBW and ${\Delta}HUTEST$ significantly affected contrast enhancement on CCTA images and that the combined use of clinical information and test bolus results is useful for predicting aortic enhancement.

Big Data-Based Air Demand Prediction for the Improvement of Airport Terminal Environment in Urban Area (도심권 공항 터미널 환경 개선을 위한 빅 데이터 기반의 항공수요예측)

  • Cho, Him-Chan;Kwag, Dong-gi;Bae, Jeong-hwan
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.8
    • /
    • pp.165-170
    • /
    • 2019
  • According to the statistics of the Ministry of Land Transport and Transportation in 2018, the average annual average number of air traffic users for has increased by 5.07% for domestic flights and 8.84% for international flights. Korea is facing a steady rise in demand from foreign tourists due to the Korean Wave. At the same time, a new lifestyle that values the quality of life of individuals is taking root, along with the emergence of LCC, and Korean tourists' overseas tours are also increasing, so improvement and expansion of domestic airport passenger terminals is urgently needed. it is important to develop a structured airport infrastructure by making efficient and accurate forecasts of aviation demand. in this study, based on the Big Data, long-term domestic and international demand forecasts for urban airports were conducted.. Domestic flights will see a decrease in the number of airport passengers after 2028, and international flights will continue to increase. It is imperative to improve and expand passenger terminals at domestic airports.

Dynamic quantitative risk assessment of accidents induced by leakage on offshore platforms using DEMATEL-BN

  • Meng, Xiangkun;Chen, Guoming;Zhu, Gaogeng;Zhu, Yuan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.1
    • /
    • pp.22-32
    • /
    • 2019
  • On offshore platforms, oil and gas leaks are apt to be the initial events of major accidents that may result in significant loss of life and property damage. To prevent accidents induced by leakage, it is vital to perform a case-specific and accurate risk assessment. This paper presents an integrated method of Ddynamic Qquantitative Rrisk Aassessment (DQRA)-using the Decision Making Trial and Evaluation Laboratory (DEMATEL)-Bayesian Network (BN)-for evaluation of the system vulnerabilities and prediction of the occurrence probabilities of accidents induced by leakage. In the method, three-level indicators are established to identify factors, events, and subsystems that may lead to leakage, fire, and explosion. The critical indicators that directly influence the evolution of risk are identified using DEMATEL. Then, a sequential model is developed to describe the escalation of initial events using an Event Tree (ET), which is converted into a BN to calculate the posterior probabilities of indicators. Using the newly introduced accident precursor data, the failure probabilities of safety barriers and basic factors, and the occurrence probabilities of different consequences can be updated using the BN. The proposed method overcomes the limitations of traditional methods that cannot effectively utilize the operational data of platforms. This work shows trends of accident risks over time and provides useful information for risk control of floating marine platforms.

Comparison of Dose Rates from Four Surveys around the Fukushima Daiichi Nuclear Power Plant for Location Factor Evaluation

  • Sanada, Yukihisa;Ishida, Mutsushi;Yoshimura, Kazuya;Mikami, Satoshi
    • Journal of Radiation Protection and Research
    • /
    • v.46 no.4
    • /
    • pp.184-193
    • /
    • 2021
  • Background: The radionuclides released by the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident 9 years ago are still being monitored by various research teams and the Japanese government. Comparison of different surveys' results could help evaluate the exposure doses and the mechanism of radiocesium behavior in the urban environment in the area. In this study, we clarified the relationship between land use and temporal changes in the ambient dose rates (air dose rates) using big data. Materials and Methods: We set a series of 1 × 1 km2 meshes within the 80 km zone of the FDNPP to compare the different survey results. We then prepared an analysis dataset from all survey meshes to analyze the temporal change in the air dose rate. The selected meshes included data from all survey types (airborne, fixed point, backpack, and carborne) obtained through the all-time survey campaigns. Results and Discussion: The characteristics of each survey's results were then evaluated using this dataset, as they depended on the measurement object. The dataset analysis revealed that, for example, the results of the carborne survey were smaller than those of the other surveys because the field of view of the carborne survey was limited to paved roads. The location factor of different land uses was also evaluated considering the characteristics of the four survey methods. Nine years after the FDNPP accident, the location factor ranged from 0.26 to 0.49, while the half-life of the air dose rate ranged from 1.2 to 1.6. Conclusion: We found that the decreasing trend in the air dose rate of the FDNPP accident was similar to the results obtained after the Chernobyl accident. These parameters will be useful for the prediction of the future exposure dose at the post-accident.

A study of Battery User Pattern Change tracking method using Linear Regression and ARIMA Model (선형회귀 및 ARIMA 모델을 이용한 배터리 사용자 패턴 변화 추적 연구)

  • Park, Jong-Yong;Yoo, Min-Hyeok;Nho, Tae-Min;Shin, Dae-Kyeon;Kim, Seong-Kweon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.3
    • /
    • pp.423-432
    • /
    • 2022
  • This paper addresses the safety concern that the SOH of batteries in electric vehicles decreases sharply when drivers change or their driving patterns change. Such a change can overload the battery, reduce the battery life, and induce safety issues. This paper aims to present the SOH as the changes on a dashboard of an electric vehicle in real-time in response to user pattern changes. As part of the training process I used battery data among the datasets provided by NASA, and built models incorporating linear regression and ARIMA, and predicted new battery data that contained user changes based on previously trained models. Therefore, as a result of the prediction, the linear regression is better at predicting some changes in SOH based on the user's pattern change if we have more battery datasets with a wide range of independent values. The ARIMA model can be used if we only have battery datasets with SOH data.

State recognition of fine blanking stamping dies through vibration signal machine learning (진동신호 기계학습을 통한 프레스 금형 상태 인지)

  • Seok-Kwan Hong;Eui-Chul Jeong;Sung-Hee Lee;Ok-Rae Kim;Jong-Deok Kim
    • Design & Manufacturing
    • /
    • v.16 no.4
    • /
    • pp.1-6
    • /
    • 2022
  • Fine blanking is a press processing technology that can process most of the product thickness into a smooth surface with a single stroke. In this fine blanking process, shear is an essential step. The punches and dies used in the shear are subjected to impacts of tens to hundreds of gravitational accelerations, depending on the type and thickness of the material. Therefore, among the components of the fine blanking mold (dies), punches and dies are the parts with the shortest lifespan. In the actual production site, various types of tool damage occur such as wear of the tool as well as sudden punch breakage. In this study, machine learning algorithms were used to predict these problems in advance. The dataset used in this paper consisted of the signal of the vibration sensor installed in the tool and the measured burr size (tool wear). Various features were extracted so that artificial intelligence can learn effectively from signals. It was trained with 5 features with excellent distinguishing performance, and the SVM algorithm performance was the best among 33 learning models. As a result of the research, the vibration signal at the time of imminent tool replacement was matched with an accuracy of more than 85%. It is expected that the results of this research will solve problems such as tool damage due to accidental punch breakage at the production site, and increase in maintenance costs due to prediction errors in punch exchange cycles due to wear.