Journal of the Earthquake Engineering Society of Korea
/
v.20
no.7_spc
/
pp.485-494
/
2016
The risk-based assessment, also called time-based assessment of structure is usually performed to provide seismic risk evaluation of a target structure for its entire life-cycle, e.g. 50 years. The prediction of collapse probability is the estimator in the risk-based assessment. While the risk-based assessment is the key in the performance-based earthquake engineering, its application is very limited because this evaluation method is very expensive in terms of simulation and computational efforts. So the evaluation database for many archetype structures usually serve as representative of the specific system. However, there is no such an assessment performed for building stocks in Korea. Consequently, the performance objective of current building code, KBC is not clear at least in a quantitative way. This shortcoming gives an unresolved issue to insurance industry, socio-economic impact, seismic safety policy in national and local governments. In this study, we evaluate the comprehensive seismic performance of an low-rise residential buildings with discontinuous structural walls, so called piloti-type structure which is commonly found in low-rise domestic building stocks. The collapse probability is obtained using the risk integral of a conditioned collapse capacity function and regression of current hazard curve. Based on this approach it is expected to provide a robust tool to seismic safety policy as well as seismic risk analysis such as Probable Maximum Loss (PML) commonly used in the insurance industry.
Journal of the Institute of Electronics Engineers of Korea CI
/
v.49
no.2
/
pp.1-6
/
2012
In recent years global climate change of hurricanes and torrential rains are going to significantly, that increase damages to property and human life. The disasters have been several claimed in every field. In future, climate changes blowing are keen to strike released to the world like in several movies. Reducing the damage of long-term weather phenomena are emerging with predicting changes in weather. In this study, it is shown how to predict the red tide phenomenon with multiple linear regression analysis and artificial neural network techniques. The red tide phenomenon causing risk could be reduced by filtering sensor data which are transmitted and forecasted in real time. It could be ubiquitous driven custom marine information service system, and forecasting techniques to use throughout the meteorological disasters to minimize damage.
This study is about choice attribution of customers make in food and beverage events. The researcher provided practical plans to uplift food-related enterprises and activate management through surveys and positive analyses, targeting customers who use food services. First of all, all event plans must include customer demands, social changes, special qualities of the business, and market research. Second, low demand season must be customers will be induced to the events. Third, prediction for market variable and solutions must be thoroughly examined and plans should look into the future to maintain a long period of time. Fourth, sufficient communication between planners and employees should be made before the event starts, so that food and beverage businesses can gain trust and quality of event services.Fifth, immaterial service and visible goods/menus in business of food and beverage events must be closely matched. Sixth, menus introducing a variety of merchandise, quality of nutrition and health of the business should be developed. Also, events from countries(regions) should be hold to create a market of cultural exchange. Seventh, for hereafter event plans, feedbacks are needed concerning customers needs and demands through customer care, after the food and beverage events. Eight, faculty management for convenience, kindness, safety, and life preserver accommodations in parking areas must be made, as automobiles are necessaries for people in Mycar era. The ninth, off-line and on-line care through on-line business construction and production of homepage must be done, due to the fact that even the well-made events are bound to fail if they are not delivered to the customers.
This paper describes the application of a wireless sensor network to a 31 meter-tall medieval tower located in the city of Trento, Italy. The effort is motivated by preservation of the integrity of a set of frescoes decorating the room on the second floor, representing one of most important International Gothic artworks in Europe. The specific application demanded development of customized hardware and software. The wireless module selected as the core platform allows reliable wireless communication at low cost with a long service life. Sensors include accelerometers, deformation gauges, and thermometers. A multi-hop data collection protocol was applied in the software to improve the system's flexibility and scalability. The system has been operating since September 2008, and in recent months the data loss ratio was estimated as less than 0.01%. The data acquired so far are in agreement with the prediction resulting a priori from the 3-dimensional FEM. Based on these data a Bayesian updating procedure is employed to real-time estimate the probability of abnormal condition states. This first period of operation demonstrated the stability and reliability of the system, and its ability to recognize any possible occurrence of abnormal conditions that could jeopardize the integrity of the frescos.
Objective: We evaluated the effect of various patient characteristics and time-density curve (TDC)-factors on the test bolus-affected vessel enhancement on coronary computed tomography angiography (CCTA). We also assessed the value of generalized linear regression models (GLMs) for predicting enhancement on CCTA. Materials and Methods: We performed univariate and multivariate regression analysis to evaluate the effect of patient characteristics and to compare contrast enhancement per gram of iodine on test bolus (${\Delta}HUTEST$) and CCTA (${\Delta}HUCCTA$). We developed GLMs to predict ${\Delta}HUCCTA$. GLMs including independent variables were validated with 6-fold cross-validation using the correlation coefficient and Bland-Altman analysis. Results: In multivariate analysis, only total body weight (TBW) and ${\Delta}HUTEST$ maintained their independent predictive value (p < 0.001). In validation analysis, the highest correlation coefficient between ${\Delta}HUCCTA$ and the prediction values was seen in the GLM (r = 0.75), followed by TDC (r = 0.69) and TBW (r = 0.62). The lowest Bland-Altman limit of agreement was observed with GLM-3 (mean difference, $-0.0{\pm}5.1$ Hounsfield units/grams of iodine [HU/gI]; 95% confidence interval [CI], -10.1, 10.1), followed by ${\Delta}HUCCTA$ ($-0.0{\pm}5.9HU/gI$; 95% CI, -11.9, 11.9) and TBW ($1.1{\pm}6.2HU/gI$; 95% CI, -11.2, 13.4). Conclusion: We demonstrated that the patient's TBW and ${\Delta}HUTEST$ significantly affected contrast enhancement on CCTA images and that the combined use of clinical information and test bolus results is useful for predicting aortic enhancement.
According to the statistics of the Ministry of Land Transport and Transportation in 2018, the average annual average number of air traffic users for has increased by 5.07% for domestic flights and 8.84% for international flights. Korea is facing a steady rise in demand from foreign tourists due to the Korean Wave. At the same time, a new lifestyle that values the quality of life of individuals is taking root, along with the emergence of LCC, and Korean tourists' overseas tours are also increasing, so improvement and expansion of domestic airport passenger terminals is urgently needed. it is important to develop a structured airport infrastructure by making efficient and accurate forecasts of aviation demand. in this study, based on the Big Data, long-term domestic and international demand forecasts for urban airports were conducted.. Domestic flights will see a decrease in the number of airport passengers after 2028, and international flights will continue to increase. It is imperative to improve and expand passenger terminals at domestic airports.
International Journal of Naval Architecture and Ocean Engineering
/
v.11
no.1
/
pp.22-32
/
2019
On offshore platforms, oil and gas leaks are apt to be the initial events of major accidents that may result in significant loss of life and property damage. To prevent accidents induced by leakage, it is vital to perform a case-specific and accurate risk assessment. This paper presents an integrated method of Ddynamic Qquantitative Rrisk Aassessment (DQRA)-using the Decision Making Trial and Evaluation Laboratory (DEMATEL)-Bayesian Network (BN)-for evaluation of the system vulnerabilities and prediction of the occurrence probabilities of accidents induced by leakage. In the method, three-level indicators are established to identify factors, events, and subsystems that may lead to leakage, fire, and explosion. The critical indicators that directly influence the evolution of risk are identified using DEMATEL. Then, a sequential model is developed to describe the escalation of initial events using an Event Tree (ET), which is converted into a BN to calculate the posterior probabilities of indicators. Using the newly introduced accident precursor data, the failure probabilities of safety barriers and basic factors, and the occurrence probabilities of different consequences can be updated using the BN. The proposed method overcomes the limitations of traditional methods that cannot effectively utilize the operational data of platforms. This work shows trends of accident risks over time and provides useful information for risk control of floating marine platforms.
Background: The radionuclides released by the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident 9 years ago are still being monitored by various research teams and the Japanese government. Comparison of different surveys' results could help evaluate the exposure doses and the mechanism of radiocesium behavior in the urban environment in the area. In this study, we clarified the relationship between land use and temporal changes in the ambient dose rates (air dose rates) using big data. Materials and Methods: We set a series of 1 × 1 km2 meshes within the 80 km zone of the FDNPP to compare the different survey results. We then prepared an analysis dataset from all survey meshes to analyze the temporal change in the air dose rate. The selected meshes included data from all survey types (airborne, fixed point, backpack, and carborne) obtained through the all-time survey campaigns. Results and Discussion: The characteristics of each survey's results were then evaluated using this dataset, as they depended on the measurement object. The dataset analysis revealed that, for example, the results of the carborne survey were smaller than those of the other surveys because the field of view of the carborne survey was limited to paved roads. The location factor of different land uses was also evaluated considering the characteristics of the four survey methods. Nine years after the FDNPP accident, the location factor ranged from 0.26 to 0.49, while the half-life of the air dose rate ranged from 1.2 to 1.6. Conclusion: We found that the decreasing trend in the air dose rate of the FDNPP accident was similar to the results obtained after the Chernobyl accident. These parameters will be useful for the prediction of the future exposure dose at the post-accident.
Park, Jong-Yong;Yoo, Min-Hyeok;Nho, Tae-Min;Shin, Dae-Kyeon;Kim, Seong-Kweon
The Journal of the Korea institute of electronic communication sciences
/
v.17
no.3
/
pp.423-432
/
2022
This paper addresses the safety concern that the SOH of batteries in electric vehicles decreases sharply when drivers change or their driving patterns change. Such a change can overload the battery, reduce the battery life, and induce safety issues. This paper aims to present the SOH as the changes on a dashboard of an electric vehicle in real-time in response to user pattern changes. As part of the training process I used battery data among the datasets provided by NASA, and built models incorporating linear regression and ARIMA, and predicted new battery data that contained user changes based on previously trained models. Therefore, as a result of the prediction, the linear regression is better at predicting some changes in SOH based on the user's pattern change if we have more battery datasets with a wide range of independent values. The ARIMA model can be used if we only have battery datasets with SOH data.
Seok-Kwan Hong;Eui-Chul Jeong;Sung-Hee Lee;Ok-Rae Kim;Jong-Deok Kim
Design & Manufacturing
/
v.16
no.4
/
pp.1-6
/
2022
Fine blanking is a press processing technology that can process most of the product thickness into a smooth surface with a single stroke. In this fine blanking process, shear is an essential step. The punches and dies used in the shear are subjected to impacts of tens to hundreds of gravitational accelerations, depending on the type and thickness of the material. Therefore, among the components of the fine blanking mold (dies), punches and dies are the parts with the shortest lifespan. In the actual production site, various types of tool damage occur such as wear of the tool as well as sudden punch breakage. In this study, machine learning algorithms were used to predict these problems in advance. The dataset used in this paper consisted of the signal of the vibration sensor installed in the tool and the measured burr size (tool wear). Various features were extracted so that artificial intelligence can learn effectively from signals. It was trained with 5 features with excellent distinguishing performance, and the SVM algorithm performance was the best among 33 learning models. As a result of the research, the vibration signal at the time of imminent tool replacement was matched with an accuracy of more than 85%. It is expected that the results of this research will solve problems such as tool damage due to accidental punch breakage at the production site, and increase in maintenance costs due to prediction errors in punch exchange cycles due to wear.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.