• Title/Summary/Keyword: Life time estimation

Search Result 406, Processing Time 0.034 seconds

Storage Life Estimation of Magnesium Flare Material for 81 mm Illuminating Projectile (81 mm 조명탄용 마그네슘계 조명제 저장수명 예측)

  • Back, Seungjun;Son, Youngkap;Lim, Sunghwan;Myung, Inho
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.267-274
    • /
    • 2015
  • It is necessary to both analyze root-cause of non-conformance of effective illumination time to the specification, and estimate the storage lifetime for 81 mm illuminating projectile stockpiled over 10 years. In this paper, aging mechanism of magnesium flare material due to long-term storage was supposed, and two-stage tests, pre-test and main test based on accelerated degradation tests were performed. Field storage environment of moistureproof was set up, and illumination times in the accelerated degradation tests for temperatures 60 and $70^{\circ}C$ were measured. Then, storage reliability of the projectile was estimated through analyzing the measured data and applying distribution-based degradation models to the data. The $B_{10}$ life by which 10 % of a population of the projectiles will have failed at storage temperature of $25^{\circ}C$ was estimated about 7 years.

A Study of on the Case Study of LCC Analysis for the Education and Research Building of S University (S대학교 교육연구동 LCC분석 사례 연구)

  • Seo Min-Gu;Ha Han-Ki;Park Tae-Keun
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • autumn
    • /
    • pp.329-332
    • /
    • 2003
  • The Ministry of Construction and Transportation has estimated the reconsideration of economy in construction and the dullness of LCC forcast method which supports decision-marking in safety and maintenance of buildings. So, they have introduced LCC analysis method in steps of a feasibility study and design. Because of the introduction of LCC analysis process and method, it would be possible to make a logical decision from management maintenance, estimation, user point of view. In this study, it would bepossible to show a plan and alternative of design factors and structure in one building by using LCC analysis method and to compare and analyze the reduction of life circle cost bi the elapsed time.

  • PDF

A Study on the Risk Assessment of the Underground Space -The Estimation of Smoke Reservoir Screen for Smoke Control in Subway Station Platform (지하공간의 위험성평가에 관한 연구 -지하철 역사내의 연기제어를 위한 제연경계벽의 효용성 평가)

  • Roh Sam-Kew;Hur Jun-Ho
    • Fire Science and Engineering
    • /
    • v.18 no.4
    • /
    • pp.103-109
    • /
    • 2004
  • The risk of underground space become an important issue of life safety thought the Taeku subway line Accident. It is essential to study of smoke control screen to minimize the damage of human life because of smoke passage and passenger evacuation routes are on the same vertical and dispersion movement. The Fire modeling result shows the effect of fire control screen can save the evacuation time about 2-2.5 times compare to existing the system However, The designs of fire control screen need to be complied with smoke control ventilation system to present optimum design and the position of installation.

A technology State of Life Estimation and Insulation Diagnosis for High Voltage Rotating Machine (고압회전기 절연진단 및 수명평가 기술현황)

  • Choi, Young-Chan;Wang, Jong-Bae;Kim, Ki-Jun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.31-35
    • /
    • 2000
  • We worried about the technology difference between our company and the advanced company at present motor market and are asked to set up the independent coil insulation system to accumulate insulation technology data. And to export our products at oversee market, we are asked to the evaluation of insulation performance to show our product excellence. In this study, we evaluated the insulation system of our motor, and studied the insulation diagnosis technology systematically to do site diagnosis. We are now accumulating the measured data. And also to reduce the initial insulation failure, we performed the insulation characteristic test and acquired the data to evaluate the initial soundness. We are doing the improvement of the insulation system. And also these data were used to new product development as very useful data, also will be used in the insulation deterioration diagnosis to estimate the remained life time which is very important data for the maintenance management. As the result, we were able to get our product reliability.

  • PDF

Assessment of Material Properties Using Finite Element Analysis for Small Punch Creep Testing (SP 크리프 시험의 유한요소해석을 이용한 재료물성 평가)

  • Park, Tae-Kyu;Ma, Young-Wha;Yoon, Kee-Bong;Jeong, Ill-Seok
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.511-516
    • /
    • 2001
  • Recently small punch creep testing (or miniature disc bend creep test) has received much attention through European collaborative research projects. This method was considered as a substitute for the conventional creep rupture testing by which the residual creep life is measured from the specimen taken out from serviced components of high temperature plants. It would be beneficial if the material creep properties such as power law creep constants as well as the creep rupture life can be measured from the small punch creep test. In this paper a method of assessing creep constants from the small punch creep testing is proposed. Finite element analyses were performed to investigate evolution of stress and strain rate at the weakest locations of the small punch creep specimen. Elastic-plastic-secondary creep analyses were carried out. The estimation equations for creep constants by the small punch creep testing are proposed based on the finite analysis results. Small punch creep tests were also performed with 9Cr steel and the accuracy of the proposed equation was verified by the experimental results.

  • PDF

Use of NIR Technique for Determination of Total Phosphorus and Available Phosphorus in Korean Soils (토양의 총인산과 유효인산함량을 측정하기 위한 근적외 기술의 이용)

  • Ryu, Kwan-Shig;Park, Ji-Sook
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.41 no.1
    • /
    • pp.50-54
    • /
    • 2008
  • NIR spectroscopy is newly developed tools determining the soil properties. Phosphorus in soil is one of the most difficult and time consuming elements to assess for plant needs. The calibration coefficient(R) of NIR method for total phosphorus by $HClO_4$ and $Na_2CO_3$ P was 0.91 and 0.88, and available phosphorus by Lancaster and Bray 1. extractant was 0.88 and 0.82. According to Williams guidelines for the calibration coefficient, NIR method could also be used for estimating total and available phosphorus if one performed optimal calibration for predicting soil properties. Applicability of NIR spectra, if improved accuracy, may allow the use of soil testing.

The Estimation of Dynamic/Impact Strength Characteristics of High Tensile Steel by Dynamic Lethargy Coefficient (동적무기력계수에 의한 고장력강의 동적.충격강도 특성 평가)

  • 송준혁;박정민;채희창;강희용;양성모
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.2
    • /
    • pp.96-100
    • /
    • 2002
  • The purpose of this paper is presented a rational method of predicting dynamic/impact tensile strength of high tensile steel materials widely used fur structural material of automobiles. It is known that the ultimate strength is related with the loading speed and the Lethargy Coefficient from the tensile test. The Dynamic Lethargy Coefficient is proportional to the disorientation of the molecular structure and indicates the magnitude of defects resulting from the probability of breaking the bonds responsible for its strength. The coefficient is obtained from the simple tensile test such as failure time and stresses at fracture. These factors not only affect the static strength but also have a great influence on the dynamic/impact characteristics of the joist and the adjacent structures. This strength is used to analyze the failure life prediction of mechanical system by virtue of its material fracture. The impact tensile test is performed to evaluate the life parameters due to loading speed with the proposed method. Also the evaluation of the dynamic/impact effect on the material tensile strength characteristics is compared with the result of Campbell-Cooper equation to verify the proposed method.

Assessment of Creep Properties of 9Cr Steel Using Small Punch Creep Testing (소형펀치 크리프 시험을 이용한 9Cr강의 크리프 상수 평가)

  • Yun, Gi-Bong;Park, Tae-Gyu;Sim, Sang-Hun;Jeong, Il-Seok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.9
    • /
    • pp.1493-1500
    • /
    • 2001
  • Recently small punch creep testing (or miniature disc bend creep test) has received much attention through European collaborative research projects. This method was considered as a substitute for the conventional creep rupture testing by which the residual creep life is measured from the specimen taken out from serviced components of high temperature plants. It would be beneficial if the material creep properties such as power law creep constants as well as the creep rupture life can be measured from the small punch creep test. In this paper a method of assessing creep constants from the small punch creep testing is proposed. Finite element analyses were performed to investigate evolution of stress and strain rate at the weakest locations of the small punch creep specimen. Elastic-plastic-secondary creep analyses were carried out. The estimation equations for creep constants by the small punch creep testing are proposed based on the finite analysis results. Small punch creep tests were also performed with 9Cr steel and the accuracy of the proposed equation was verified by the experimental results.

The Estimation of Craniovertebral Angle using Wearable Sensor for Monitoring of Neck Posture in Real-Time (실시간 목 자세 모니터링을 위한 웨어러블 센서를 이용한 두개척추각 추정)

  • Lee, Jaehyun;Chee, Youngjoon
    • Journal of Biomedical Engineering Research
    • /
    • v.39 no.6
    • /
    • pp.278-283
    • /
    • 2018
  • Nowdays, many people suffer from the neck pain due to forward head posture(FHP) and text neck(TN). To assess the severity of the FHP and TN the craniovertebral angle(CVA) is used in clinincs. However, it is difficult to monitor the neck posture using the CVA in daily life. We propose a new method using the cervical flexion angle(CFA) obtained from a wearable sensor to monitor neck posture in daily life. 15 participants were requested to pose FHP and TN. The CFA from the wearable sensor was compared with the CVA observed from a 3D motion camera system to analyze their correlation. The determination coefficients between CFA and CVA were 0.80 in TN and 0.57 in FHP, and 0.69 in TN and FHP. From the monitoring the neck posture while using laptop computer for 20 minutes, this wearable sensor can estimate the CVA with the mean squared error of 2.1 degree.

Assessment of thermal fatigue induced by dryout front oscillation in printed circuit steam generator

  • Kwon, Jin Su;Kim, Doh Hyeon;Shin, Sung Gil;Lee, Jeong Ik;Kim, Sang Ji
    • Nuclear Engineering and Technology
    • /
    • v.54 no.3
    • /
    • pp.1085-1097
    • /
    • 2022
  • A printed circuit steam generator (PCSG) is being considered as the component for pressurized water reactor (PWR) type small modular reactor (SMR) that can further reduce the physical size of the system. Since a steam generator in many PWR-type SMR generates superheated steam, it is expected that dryout front oscillation can potentially cause thermal fatigue failure due to cyclic thermal stresses induced by the transition in boiling regimes between convective evaporation and film boiling. To investigate the fatigue issue of a PCSG, a reference PCSG is designed in this study first using an in-house PCSG design tool. For the stress analysis, a finite element method analysis model is developed to obtain the temperature and stress fields of the designed PCSG. Fatigue estimation is performed based on ASME Boiler and pressure vessel code to identify the major parameters influencing the fatigue life time originating from the dryout front oscillation. As a result of this study, the limit on the temperature difference between the hot side and cold side fluids is obtained. Moreover, it is found that the heat transfer coefficient of convective evaporation and film boiling regimes play an essential role in the fatigue life cycle as well as the temperature difference.