• Title/Summary/Keyword: Life cycle carbon emission analysis

Search Result 58, Processing Time 0.031 seconds

Analysis of carbon emission reduction effect due to electricity conversion of container port's CHE (컨테이너 항만 하역장비의 친환경 전환에 따른 탄소 배출저감 효과 분석)

  • Ahn, Yong Sung;Lee, Hyang-Sook;Lee, Ji-Won
    • Journal of Korea Port Economic Association
    • /
    • v.40 no.2
    • /
    • pp.39-52
    • /
    • 2024
  • As the 'Eco-friendly conversion project for Port's CHE(Cargo handling Equipment) ' which has started in 2014 ends in 2024, in addition to the existing 'Low pollution' paradigm to respond to fine dust problems, a full-fledged 'Zero-emission' conversion is to be required to implement 2050 carbon neutrality at the port level. Accordingly, this study calculated the future replacement demand for container handling equipments at the four major domestic ports(Busan, Incheon, Yeosu Gwangyang, and Ulsan), and assumed a scenario where every CHE supposed to eb replaced is electrified inturn every year. And then the resulting future emission reduction effect accordingly was calculated and analyzed. In particular, compared and analyzed the emission outlook applying the life-cycle concept(LCA), which is being adopted as a new emission calculation standard in most industrial fields, and the existing emission calculation concept that only considers direct emissions within the port, to provide more effective implications for the promotion of follow-up conversion projects. According to the analysis results, if the CHE is replaced according to the proposed schedule, it is expected that the existing emissions can be reduced by 79% compared to BAU in 2025 and 97.4% in 2030. However, if the LCA is applied, it is expected to be reduced by only 27.6% by 2030. This suggests that port's CHE must be converted to zero emissions and at the same time establish an Ports' self-sufficient energy grid based on renewable energy.

Life Cylcle Assessment (LCA) on Rice Production Systems: Comparison of Greenhouse Gases (GHGs) Emission on Conventional, Without Agricultural Chemical and Organic Farming (쌀 생산체계에 대한 영농방법별 전과정평가: 관행농, 무농약, 유기농법별 탄소배출량 비교)

  • Ryu, Jong-Hee;Kwon, Young-Rip;Kim, Gun-Yeob;Lee, Jong-Sik;Kim, Kye-Hoon;So, Kyu-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.6
    • /
    • pp.1157-1163
    • /
    • 2012
  • This study was performed a comparative life cycle assessment (LCA) among three rice production systems in order to analyze the difference of greenhouse gases (GHGs) emissions and environment impacts. Its life cycle inventory (LCI) database (DB) was established using data obtained from interview with conventional, without agricultural chemical and organic farming at Gunsan and Iksan, Jeonbuk province in 2011. According to the result of LCI analysis, $CO_2$ was mostly emitted from fertilizer production process and rice cropping phase. $CH_4$ and $N_2O$ were almost emitted from rice cultivation phase. The value of carbon footprint to produce 1 kg rice (unhulled) on conventional rice production system was 1.01E+00 kg $CO_2$-eq. $kg^{-1}$ and it was the highest value among three rice production systems. The value of carbon footprints on without agricultural chemical and organic rice production systems were 5.37E-01 $CO_2$-eq. $kg^{-1}$ and 6.58E-01 $CO_2$-eq. $kg^{-1}$, respectively. Without agricultural chemical rice production system whose input amount was the smallest had the lowest value of carbon footprint. Although the yield of rice from organic farming was the lowest, its value of carbon footprint less than that of conventional farming. Because there is no compound fertilizer inputs in organic farming. Compound fertilizer production and methane emission during rice cultivation were the main factor to GHGs emission in conventional and without agricultural chemical rice production systems. In organic rice production system, the main factors to GHGs emission were using fossil fuel on machine operation and methane emission from rice paddy field.

A Study on Life-Cycle Environmental Impact of Synthetic Resin Formwork (합성수지 거푸집의 전과정 환경영향평가에 관한 연구)

  • Nam, Kyung-Yong;Yang, Keun-Hyeok;Lee, Young-Do
    • Journal of the Korea Institute of Building Construction
    • /
    • v.20 no.3
    • /
    • pp.245-252
    • /
    • 2020
  • Synthetic resin formwork is made of lightweight high-density polyethylene(HDPE). This study used a process flow chart that satisfies the system boundary (such as Cradle-to- Product shipmen ) required by ISO FDIS 13352 to evaluate the entire process of synthetic resin foam using. The entire life cycle inventory (LCI) database calculated from input energy sources, materials used, transportation methods, and manufacturing processes at the system boundary was analyzed. Based on the environmental impact assessment index methodology of the Ministry of Environment from the LCI data analysis of synthetic resin formwork, the environmental impact assessment was carried out through classification, normalization, characterization, and weighting process. The experimental results are as follows the amount of CO2 (carbon) emission considering the number of conversions was about 32% lower than that of the Euroform. This shows that the use of synthetic resin formwork reduces material production by half compared to Euroform and reduces CO2 (carbon) emissions.

Analysis of Environment Emission Characteristics Each Construction Type for Road Field (국도건설공사 도로분야의 공종별 환경부하량 특성분석)

  • Kim, Sang-Ryong;Lee, Dong-Eun;Kim, Byung-Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.1
    • /
    • pp.143-151
    • /
    • 2017
  • Recently Korea has presented carbon emission reduce goal of 37% compare to BAU until 2030 according to Paris Agreement in order to correspond to climate change. For this, researchers need to study positively on construction industry that emit $CO_2$ of $3^{rd}$ volume of 28 industry classification. This study calculated environmental load by LCA using the road part except tunnel and bridge among national road cases completed already. After selecting representative type of large construction type based on environmental emission, earth works, drainage works and paving works took up 84%. And this study analyzed the environmental emission feature of each detail construction type after selecting representative type each detail construction type. Utilization of each construction type emission attribute to environmental load during national road construction, will be helpful in making decision of eco-friendly national road construction based on environmental emission.

LCA on Lettuce Cropping System by Top-down Method in Protected Cultivation (시설상추 생산체계에 대한 top-down 방식 전과정평가)

  • Ryu, Jong-Hee;Kim, Kye-Hoon;So, Kyu-Ho;Lee, Gil-Zae;Kim, Gun-Yeob;Lee, Deog-Bae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.6
    • /
    • pp.1185-1194
    • /
    • 2011
  • This study was carried out to estimate carbon emission using LCA (Life Cycle Assessment) and to establish LCI (Life Cycle inventory) DB for lettuce production system in protected cultivation. The results of data collection for establishing LCI DB showed that the amount of fertilizer input for 1 kg lettuce production was the highest. The amounts of organic and chemical fertilizer input for 1 kg lettuce production were 7.85E-01 kg and 4.42E-02 kg, respectively. Both inputs of fertilizer and energy accounted for the largest share. The amount of field emission for $CO_2$, $CH_4$ and $N_2O$ for 1 kg lettuce production was 3.23E-02 kg. The result of LCI analysis focused on GHG (Greenhouse gas) showed that the emission value to produce 1 kg of lettuce was 8.65E-01 kg $CO_2$. The emission values of $CH_4$ and $N_2O$ to produce 1 kg of lettuce were 8.59E-03 kg $CH_4$ and 2.90E-04 kg $N_2O$, respectively. Fertilizer production process contributed most to GHG emission. Whereas, the amount of emitted nitrous oxide was the most during lettuce cropping stage due to nitrogen fertilization. When GHG was calculated in $CO_2$-equivalents, the carbon footprint from GHG was 1.14E-+00 kg $CO_2$-eq. $kg^{-1}$. Here, $CO_2$ accounted for 76% of the total GHG emissions from lettuce production system. Methane and nitrous oxide held 16%, 8% of it, respectively. The results of LCIA (Life Cycle Impact assessment) showed that GWP (Global Warming Potential) and POCP (Photochemical Ozon Creation Potential) were 1.14E+00 kg $CO_2$-eq. $kg^{-1}$ and 9.45E-05 kg $C_2H_4$-eq. $kg^{-1}$, respectively. Fertilizer production is the greatest contributor to the environmental impact, followed by energy production and agricultural material production.

Estimation of Carbon Emission and Application of LCA (Life Cycle Assessment) from Barely (Hordeum vulgare L.) Production System (보리의 생산과정에서 발생하는 탄소배출량 산정 및 전과정평가 적용)

  • So, Kyu-Ho;Park, Jung-Ah;Lee, Gil-Zae;Ryu, Jong-Hee;Shim, Kyo-Moon;Roh, Kee-An
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.5
    • /
    • pp.722-727
    • /
    • 2010
  • This study was conducted to estimate the carbon footprint and to establish the database of the LCI (Life Cycle Inventory) for barely cultivation system. Barley production system was separated into the naked barley, the hulled barley and the two-rowed barley according to type of barley species. Based on collecting the data for operating LCI, it was shown that input of fertilizer was the highest value of 9.52E-01 kg $kg^{-1}$ for two-rowed braley. For LCI analysis focussed on the greenhouse gas (GHG), it was observed that carbon footprint were 1.25E+00 kg $CO_2$-eq. $kg^{-1}$ naked braley, 1.09E+00 kg $CO_2$-eq. $kg^{-1}$ hulled braley and 1.71E+00 $CO_2$-eq. $kg^{-1}$ two-rowed barley; especially two-rowed barley cultivation system had highest emission value as 1.09E+00 kg $CO_2$ $kg^{-1}$ barley. It might be due to emit from mainly fertilizer production for barley cultivation. Also $N_2O$ was emitted at 7.55E-04 kg $N_2O\;kg^{-1}$ barley as highest value from hulled barley cultivation system because of high N fertilizer input. The result of life cycle impcat assessment (LCIA), it was observed that most of carbon emission from barely cultivation system was mainly attributed to fertilizer production and cropping unit. Characterization value of GWP was 1.25E+00 (naked barley), 1.09E+00 (hulled barley) and 1.71E+00 (two-rowed barely) kg $CO_2$-eq. $kg^{-1}$, respectively.

$SF_6$ Emission Characteristics at High Voltage Equipments in use-phase Stage (고압 전력기기에서의 $SF_6$ Gas 사용단계별 배출특성에 관한 연구)

  • Park, Jung-Ju;Cha, Yeun-Haeng
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.12
    • /
    • pp.2199-2201
    • /
    • 2008
  • Sulfur hexafluoride($SF_6$) is a gaseous dielectric used in high voltage electrical equipment such as an insultor or arc quenching medium in the transmission and distribution of electricity. however, $SF_6$ is one of the greenhouse gases(GHG) with a global warming potential that is 23,900 times greater than that of carbon dioxide($CO_2$). for this reason, $SF_6$ emissions in electric equipment shall be controlled to reduce GHG and improve cost-effective use of $SF_6$ for economical benefits. Until recently there has not been any investigation on $SF_6$ emission characteristics and inventory in Korea. To understand emission characteristics during the use-phase, the scope of this study was limited to the following closed pressure system equipment from 10 substations in Korea. This study highlights (1) the investigation of sampling/analysis methodology for $SF_6$ emissions in high voltage equipment, (2) the estimation of $SF_6$ emissions in the use-phase, and (3) the comparison between the emission ratio and the mass-balance applied to inventory study. According to this study, the majority of emissions were related to electric equipment nameplates and the rest of the emissions were related to the handling of $SF_6$ during operations. from this result, emission ratios estimated from this study were similar; GIS was 14% and GCB was 13%, as maintenance process conditions were the same as manual process conditions for both equipment.

Optimal Design of Cogeneration System for General Facilities Considering LCC Analysis (LCC 분석을 고려한 일반 시설물에서 소형열병합발전의 최적 설계)

  • Kang, Yul-Ho;Ku, Bon-Cheol;Hwang, Yu-Jin;Song, Jae-Do;Cheong, Seong-Ir;Lee, Jae-Keun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.8
    • /
    • pp.439-447
    • /
    • 2009
  • Cogeneration system produces power as well as heat recovered from waste heat during power generation process. This system has higher energy efficiency than that of the power plant. In this study the optimal design for the cogeneration system with the increase of the capacity considering life cycle cost(LCC) analysis has been performed in the general facilities such as hotels and hospitals under the assumption of electricity cost of 95 won/kWh, the initial cost of cogeneration system of 1,500,000 won!kW and the value of 0.5${\sim}$1.0 in the ratio of heat to power. The optimal ratio of cogeneration capacity divided by average electricity load of facility was found out more than 0.5 in case of electricity cost with the increase of>30%, and the percentage of $CO_2$ reduction was about 9%. The most important factors in the economic analysis of cogeneration system was found out the electrity cost and the initial cost of cogeneration system. Also the ratio of heat to power at the value of>0.5 was not affected in the economy of cogeneration system, but was very important in the $CO_2$ reduction.

Status and Response Strategies of Carbon Labeling in Landscape Architecture (조경분야 탄소성적표지제도 적용실태 및 대응전략)

  • Kim, Jeong-Ho;Yoon, Yong-Han
    • Journal of Environmental Science International
    • /
    • v.24 no.6
    • /
    • pp.709-720
    • /
    • 2015
  • After analyzing the actual acquisition status of carbon labeling by year and by product for the past four years, as well as its certification in the construction-related sectors of greenhouse gas emission, this study attempted to present the problems and coping strategies upon issuing the carbon labeling certification in the landscape architecture. During the period of this analysis, the carbon labelings were acquired by 134 enterprises, 267 workplaces, and 735 products, while the percentage of acquisition was highest in the regular non-durable goods(49%), followed by energy-consuming durable goods(26%), regular production goods (19%), regular durable goods(3%), and service(3%). Furthermore, the acquisition certifications in construction sectors, were highest in the various pipes/panel(8 cases), followed by concrete(6 cases), gypsum board(4 cases), and landscape architecture materials(2 cases). The landscape architecture only had two cases in the acquisition certification for the first time in 2012, which accounted for 0.27% of the entire certification products, due to the uncertainty in the process, the lack of professionalism, and the lack of comprehension. However, the study conducted on the coping strategies for carbon labeling in the landscape architecture revealed the following: (1) regular reporting system management through the division of labor in the head office and factories, (2) the building of objective DB through the adoption of data management programs such as SAP, (3) continuous promotion and vitalization of the incentive system, (4) the adoption of mandatory or preferential application system in landscaping projects, management, and bidding, (5) enhancement of elasticity in deliberation of certification by recruiting experts in the landscape architecture sectors, and (6) provision of incentives for the cooperative firms acquiring the certification and support for their participation.

Comparison of Land Farming and Chemical Oxidation based on Environmental Footprint Analysis (환경적 footprint 분석을 통한 토양경작법과 화학적산화법의 비교)

  • Kim, Yun-Soo;Lim, Hyung-Suk;Park, Jae-Woo
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.3
    • /
    • pp.7-14
    • /
    • 2015
  • In this study, land farming and chemical oxidation of a diesel-contaminated site is compared to evaluate the environmental impact during soil remediation using the Spreadsheet for Environmental Footprint Analysis by U.S. EPA. Each remediation process is divided into four phases, consisting of soil excavation, backfill and transportation (Phase 0), construction of remediation facility (Phase 1), remediation operation (Phase 2), and restoration of site and waste disposal (Phase 3). Environmental footprints, such as material use, energy consumption, air emission, water use and waste generation, are analyzed to find the way to minimize the environmental impact. In material use and waste generation, land farming has more environmental effect than chemical oxidation due to the concrete and backfill material used to construct land farming facility in Phase 1. Also, in energy use, land farming use about six times more energy than chemical oxidation because of cement production and fuel use of heavy machinery, such as backhoe and truck. However, carbon dioxide, commonly considered as important factor of environmental impact due to global warming effect, is emitted more in chemical oxidation because of hydrogen peroxide production. Water use of chemical oxidation is also 2.1 times higher than land farming.