• 제목/요약/키워드: Life Signal

검색결과 1,156건 처리시간 0.028초

Deep Learning Based Emergency Response Traffic Signal Control System

  • Jeong-In, Park
    • 한국컴퓨터정보학회논문지
    • /
    • 제28권2호
    • /
    • pp.121-129
    • /
    • 2023
  • 이 논문에서 우리는 응급상황에 대응하여 일정 구간의 교통신호를 능동적으로 제어함으로써 재산과 인명 손실을 최소화할 수 있는 응급상황 대응 교통신호 제어 시스템을 개발하였다. 응급 차량 단말기에서 식별정보 및 GPS 정보를 포함한 응급신호를 송출하면 카메라에서 주위 영상을 획득하게 되고, 딥러닝 기반으로 객체를 분석하여 객체의 위치, 종류, 크기 등 정보를 가지는 객체정보를 출력한다. 이 객체를 트래킹한 정보를 생성하여 신호체계를 검출한 후 신호체계를 응급모드로 전환하여 수신받은 GPS 정보를 기준으로 응급 차량을 식별·추적하고 이 응급 차량의 진행 경로 기준으로 긴급 제어신호를 교통신호 제어기로 전송할 수 있는 체계이다. 이 시스템은 응급신호에 따라 우선 적용되는 긴급 제어신호에 의해 응급 차량의 진행이 저지되지 않도록 하여, 교통상 장애에 따른 인명과 재산의 손실을 최소화할 수 있다.

임파구 ADP-ribosyltransferase의 rat mammary adenocarcinoma cell에서의 발현 (Expression of Lymphocyte ADP-ribosyltransferase in Rat Mammary Adenocarcinoma Cells)

  • 김현주
    • 생명과학회지
    • /
    • 제8권1호
    • /
    • pp.102-108
    • /
    • 1998
  • Gltcosylphosphatidylinositol (GPI)에 의해 고정된 단백질의 초기 형태는 골지체에서의 직접적인 processing을 수행하기 위한 아미노와 카르 복시 말단의 hydrophobic signal sequence를 소유하고 있다. 앞서, mouse 임파구로부터 NAD;arginine ADP-ribosyltransferase (Yac-1)가 클로닝되었으며 Yac-1 transferase의 아미노산 배열을 추정해 본 결과, hydrophobic 아미노와 카르복시 말단을 포함하고 있었으며 이는 GPI-anchroed 단백질들의 알려진 signal sequence와 일치하였다. 미 transferase는 야생형의 cDNA로 transfection된 NMU (rat mammary adenocarcinoma) cell의 표면에 존재하였으며 phosphoatidylinosotol-specific phospholipase C에 의해 방출되어졌다. 카르복시 말단의 hydrophobic sequence가 없는 돌연변이체는 수용성이며 분비성인 transferase를 생산하였다. 이러한 사실은 카르복시 말단의 sequence가 없는 돌연변이체는 수용성이며 분비성인 transferase를 생산하였다. 이러한 사실은 카르복시 말단의 sequence가 GPI의 부착에 중요함을 나타내준다.

  • PDF

A Study on a Healthcare System Using Smart Clothes

  • Lim, Chae Young;Kim, Kyungho
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권1호
    • /
    • pp.372-377
    • /
    • 2014
  • Being able to monitor the heart will allow the diagnosis of heart diseases for patients during daily activities, and the detection of burden on the heart during strenuous exercise. Furthermore, with the help of U-health technology, immediate medical action can be taken, in the case of abnormal symptoms of the heart in daily life. Therefore, it appears to be necessary to develop the corresponding technology to monitor the condition of the heart daily. In this study, a novel wearable smart system was proposed, to monitor the activity of the heart in daily life, and to further evaluate the rhythm of arrhythmia. The wearable system includes three modified bipolar conductive fiber electrodes in the chest part, which can resolve the reduction problem of the magnitude of the signal, by magnifying the signal and removing the noise, to obtain high affinity and validity for medical-type usage (<0.903%). The biological signal acquisition and data lines, and the signal processing engine and communication consist of a conductive ink, and the pic18 and ANT protocol nRF24AP2, respectively. The proposed algorithm was able to detect a strong ECG, signal and r-point passing over the noise. The confidence intervals were 96 %, which could satisfy the requirement to detect arrhythmia under the unconstrained conditions.

부분방전 신호의 PRPDA누적 검출과 퍼지 알고리즘을 이용한 컴퓨터 진단에 관한 연구 (A study about computer diagnosis that apply fuzzy algorithm and PRPDA accumulation detection of PD signal)

  • 김진수;박건준;오성권;김용갑
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2005년도 추계종합학술대회
    • /
    • pp.1015-1018
    • /
    • 2005
  • In this paper, we introduce about a new class to analysis of partial discharge signal based on Fuzzy model. We can early diagnose life of power cable through detection of partial discharge signal. However, partial discharge signal detector is difficult because of partial discharge signal is very non-linear. Also, it is very difficult work that separate partial discharge signal from noise. We constructed partial discharge accumulation detection system that use Labview for detection of non-linear partial discharge signal. And analyzed partial discharge signal that is detected by Labview system utilizing Fuzzy model.

  • PDF

퍼지 알고리즘을 이용한 부분방전 신호의 진단에 관한 연구 (A study about diagnosis of PD signal using by Fuzzy algorithm)

  • 김진수;박재완;박건준;오성권;김용갑
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2005년도 추계학술대회 학술발표 논문집 제15권 제2호
    • /
    • pp.440-443
    • /
    • 2005
  • In this paper, we introduce about a new class to analysis of partial discharge signal based on Fuzzy model. We can early diagnose life of power cable through detection of partial discharge signal. However, partial discharge signal detector is difficult because of partial discharge signal is very non-linear. Also, it is very difficult work that separate partial discharge signal from noise. We constructed partial discharge accumulation detection system that use Labview for detection of non-linear partial discharge signal. And analyzed partial discharge signal that is detected by Labview system utilizing Fuzzy model.

  • PDF

심전도 신호처리 및 분석에 관한 기초연구 (A Basic Study on the signal Processing and Analysis of ECG)

  • 정구영;권대규;유기호;이성철
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.294-294
    • /
    • 2000
  • In this paper, we would like to discuss the signal processing and the algorithm for ECG analysis. The ECG gives us information about the condition of the heart muscle, because myocardial abnormality or infarction is inscribed on the ECG during myocardial depolarization and repolarization. Analyzing the ECG signal, we can find heart disease, for example, arrhythmia and myocardial infarction, etc. Particularly, detecting arrhythmia is more important, because serious arrhythmia can take away the life from patients within ten minutes. The wavelet transform decomposes the ECG signal into high and low frequency component using wavelet function. Recomposing high frequency bands including QRS complex, we can detect QRS complex and eliminate the noise from the original ECG signal. To recognize the ECG signal pattern, we adopted the curve-fitting partially and statistical method. The ECG signal is divided into small parts based on QRS complex, and then, each part is approximated to the polynomials. Comparing the approximated ECG pattern with some kinds of heart disease ECG pattern, we can detect and classify the kind of heart disease.

  • PDF