• Title/Summary/Keyword: Life Ion

Search Result 912, Processing Time 0.036 seconds

Data-Driven Approach for Lithium-Ion Battery Remaining Useful Life Prediction: A Literature Review

  • Luon Tran Van;Lam Tran Ha;Deokjai Choi
    • Smart Media Journal
    • /
    • v.11 no.11
    • /
    • pp.63-74
    • /
    • 2022
  • Nowadays, lithium-ion battery has become more popular around the world. Knowing when batteries reach their end of life (EOL) is crucial. Accurately predicting the remaining useful life (RUL) of lithium-ion batteries is needed for battery health management systems and to avoid unexpected accidents. It gives information about the battery status and when we should replace the battery. With the rapid growth of machine learning and deep learning, data-driven approaches are proposed to address this problem. Extracting aging information from battery charge/discharge records, including voltage, current, and temperature, can determine the battery state and predict battery RUL. In this work, we first outlined the charging and discharging processes of lithium-ion batteries. We then summarize the proposed techniques and achievements in all published data-driven RUL prediction studies. From that, we give a discussion about the accomplishments and remaining works with the corresponding challenges in order to provide a direction for further research in this area.

Chloride Penetration Analysis of Concrete Structures with Chloride Concentration (염분 농도에 따른 콘크리트 구조물의 염분침투 해석)

  • Yang, Joo-Kyoung
    • Journal of the Korea Computer Industry Society
    • /
    • v.9 no.3
    • /
    • pp.137-142
    • /
    • 2008
  • The major influence factor on chloride penetration into concrete structures is chloride ion concentration. In this study, chloride penetration analyses with chloride ion concentration were carried out by the developed program. Also, the service life of concrete structures was predicted. The penetration depth was 32mm in case that chloride ion concentration wad 600ppm. It was shown that the service life of concrete structures with 40mm cover depth was 167 years even though they had been exposed at chloride ion concentration 600ppm during 100 years.

  • PDF

Two Dimensional Chloride Ion Diffusion in Reinforced Concrete Structures for Railway

  • Kang, Bo-Soon;Shim, Hyung-Seop
    • International Journal of Railway
    • /
    • v.4 no.4
    • /
    • pp.86-92
    • /
    • 2011
  • Chloride ion diffusion at the corner of rectangular-shaped concrete structures is presented. At the corner of rectangular-shaped concrete, chloride ion diffusion is in two-dimensional process. Chloride ions accumulate from two orthogonal directions, so that corrosion-free life of concrete structures is significantly reduced. A numerical procedure based on finite element method is used to solve the two-dimensional diffusion process. Orthotropic property of diffusion coefficient of concrete is considered and chloride ion profile obtained from numerical analysis is used to produce transformed diffusion coefficient. Comparisons of experimental data are also carried out to show the reliability of proposed numerical analysis. As a result of two-dimensional chloride diffusion, corrosion-free life of concrete structure for railway is estimated using probability of corrosion initiation. In addition, monographs that produces transformed diffusion coefficient and corrosion-free life of concrete structure are made for maintenance purpose.

  • PDF

Influence of Cement Type on the Diffusion Characteristics of Chloride Ion in Concrete (콘크리트의 염소이온 확산특성에 미치는 시멘트 종류의 영향)

  • Park, Jae-Im;Bae, Su-Ho;Lee, Kwang-Myong;Kim, Jee-Sang;Cha, Soo-Won
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.573-576
    • /
    • 2006
  • To predict service life of concrete structures exposed to chloride attack, surface chloride concentration, diffusion coefficient of chloride ion, and chloride corrosion threshold value in concrete, are used as important factors. of these, as the diffusion coefficient of chloride ion for concrete is strongly influenced by concrete quality and environmental conditions of structures and may significantly change the service life of structures, it is considered as the most important factor for service life prediction. The qualitative factors affecting the penetration and diffusion of chloride ion into concrete are water-binder(W/B) ratio, age, cement type and constituents, chloride ion concentration of given environment, wet and dry conditions, etc. In this paper the influence of cement type on the diffusion characteristics of chloride ion in concrete was investigated through the chloride ion diffusion test. For this purpose, the diffusion characteristics in concrete with cement type such as ordinary portland cement(OPC), binary blended cement(BBC), and ternary blended cement(TBC) were estimated for the concrete with W/B ratios of 32% and 38%, respectively. It was observed from the test that the difussion characteristics of BBC containing OPC and ground granulated blast-furnace slag was found to be most excellent of the cement type used in this study.

  • PDF

Modeling to Estimate the Cycle Life of a Lithium-ion Battery (리튬이온전지의 사이클 수명 모델링)

  • Lee, Jaewoo;Lee, Dongcheul;Shin, Chee Burm;Lee, So-Yeon;Oh, Seung-Mi;Woo, Jung-Je;Jang, Il-Chan
    • Korean Chemical Engineering Research
    • /
    • v.59 no.3
    • /
    • pp.393-398
    • /
    • 2021
  • In order to optimize the performance of a lithium-ion battery, a performance prediction modeling technique that considers various degradation factors is required. In this work, mathematical modeling was carried-out to predict the change in discharging behavior and cycle life, taking into account the cycle aging of lithium-ion batteries. In order to validate the modeling, a cycling test was performed at the charge/discharge rate of 0.25C, and discharging behavior was measured through RPT (Reference Performance Test) performed at 30 cycle intervals. The accuracy of cycle life prediction was improved by considering the break-in mechanism, one of the phenomena occurring in the BOL (beginning of life), in the model for predicting the cycle life of lithium-ion batteries. The predicted change in cycle life based on the model was in good agreement with the experimental results.

Deep Learning Approaches to RUL Prediction of Lithium-ion Batteries (딥러닝을 이용한 리튬이온 배터리 잔여 유효수명 예측)

  • Jung, Sang-Jin;Hur, Jang-Wook
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.12
    • /
    • pp.21-27
    • /
    • 2020
  • Lithium-ion batteries are the heart of energy-storing devices and electric vehicles. Owing to their superior qualities, such as high capacity and energy efficiency, they have become quite popular, resulting in an increased demand for failure/damage prevention and useable life maximization. To prevent failure in Lithium-ion batteries, improve their reliability, and ensure productivity, prognosticative measures such as condition monitoring through sensors, condition assessment for failure detection, and remaining useful life prediction through data-driven prognostics and health management approaches have become important topics for research. In this study, the residual useful life of Lithium-ion batteries was predicted using two efficient artificial recurrent neural networks-ong short-term memory (LSTM) and gated recurrent unit (GRU). The proposed approaches were compared for prognostics accuracy and cost-efficiency. It was determined that LSTM showed slightly higher accuracy, whereas GRUs have a computational advantage.

Modification and adhesion improvement of BN interfacial layers by Post-N+ implantation (질소 이온주입법에 의한 BN 박막의 계면구조 개선 및 밀착력 향상)

  • 변응선;이성훈;이상로;이구현;한승희;이응직;윤재홍
    • Journal of the Korean Vacuum Society
    • /
    • v.8 no.2
    • /
    • pp.157-164
    • /
    • 1999
  • The post ion implantation has been applied to modify early-grown BN layer and improve the adhesion of the BN films. The effect of ion implantation doses on microstructure and interlayer was investigated by FTIR and HRTEM. And the hardness and delamination life time of N+-implanted BN films were measured. With increasing the ion dose up to $5.0\times10^{15}\textrm{atoms/cm}^2$,the change of IR spectrum is observed. At $5.0\times10^{16}\textrm{atoms/cm}^2$, a drastic transition of cubic phase into hexagonal phase is detected. The change of microstructure of early-grown layers by ion implantation is confirmed using HRTEM. Both microhardness and delamination life time of BN films increase with ion dose. The modification model of early-grown BN layers is briefly discussed based on the displacement per atom and excess boron in the BN film induced by ion irradiation.

  • PDF

Growth and DNA Alteration of Heavy-ion Beam Irradiated Tobacco(Nicotiana plumbaginifolia) Plant (중이온 빔조사 담배(Nicotiana plumbaginifolia) 식물체의 생장과 DNA 변이)

  • Lyu Jae-Il;Kim Min-Su;Tomoko Abe;Lee Hyo-Yeon;Yang Deok-Chun;Bae Chang-Hyu
    • Korean Journal of Plant Resources
    • /
    • v.18 no.1
    • /
    • pp.169-178
    • /
    • 2005
  • Effects of heavy-ion beam$(^{20}Ne)$ irradiation on growth and DNA alteration of tobacco plants were investigated. Seed germination and plant height were decresed as the ion-beam intensity was increased. However, the bolting and flowering were promoted by the low intensities of 5 Gy to 10 Gy treatment. Out of the 100 primers screened, 59 primers generated 336 DNA fragments by RAPD analysis, and one specific DNA fragment that amplified in control but not in the ion-beam irradiated plants was observed. By AFLP analysis, DNA fragment difference related to the ion-beam treatment was not detected but observed among the plant bodys.

Neuro Fuzzy System for the Estimation of the Remaining Useful Life of the Battery Using Equivalent Circuit Parameters (등가회로 파라미터를 이용한 배터리 잔존 수명 평가용 뉴로 퍼지 시스템)

  • Lee, Seung-June;Ko, Younghwi;Kandala, Pradyumna Telikicherla;Choi, Woo-Jin
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.3
    • /
    • pp.167-175
    • /
    • 2021
  • Reusing electric vehicle batteries after they have been retired from mobile applications is considered a feasible solution to reduce the demand for new material and electric vehicle costs. However, the evaluation of the value and the performance of second-life batteries remain a problem that should be solved for the successful application of such batteries. The present work aims to estimate the remaining useful life of Li-ion batteries through the neuro-fuzzy system with the equivalent circuit parameters obtained by Electrochemical Impedance Spectroscopy (EIS). To obtain the impedance spectra of the Li-ion battery over the life, a 18650 cylindrical cell has been aged by 1035 charge/discharge cycles. Moreover, the capacity and the parameters of the equivalent circuit of a Li-ion battery have been recorded. Then, the data are used to establish a neuro-fuzzy system to estimate the remaining useful life of the battery. The experimental results show that the developed algorithm can estimate the remaining capacity of the battery with an RMSE error of 0.841%.

Development of a new Li-Ion Pack-Battery for improving the electrical properties (전기적인 특성향상을 위한 리튬이온전지팩 개발)

  • Gang, Young-Gu;Kweon, Hyun-Kyu;Seo, Myung-Su;Park, Chang-Yong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.8 no.2
    • /
    • pp.90-95
    • /
    • 2009
  • This paper presents a new lithium ion unit-cell and pack battery by using a new formulation ratio of material. The three types of formulation ratio for the unit-cell were used. The life cycle and basic properties of the lithium ion unit-cell$({\Psi}18{\times}65(mm))$ about one of them were acquired by the charge-discharge experiment. The nominal voltage, nominal capacity and cycle life output of the lithium ion unit-cell is respectively 3.7V, 2.4Ah, and above 500cycle. Pack type lithium ion battery has the size of $29.5{\times}73.5{\times}115(mm)$ and the weight of 300g. As the results, the weight and bulk of lithium ion battery used to a safety lamp were decreased to 1/4 and 1/7. In addition, the comparison of the new lithium ion battery and lead storge battery for confirming the effectiveness of the new lithium ion battery have been performed.

  • PDF