• Title/Summary/Keyword: Life Acceleration Test

Search Result 197, Processing Time 0.03 seconds

Evaluation of the Acceleration-factor and Analysis of the Vibration Fatigue for the Connection-pipe to the Compressor under the Random Vibration (랜덤 진동 조건에서의 압축기 연결 파이프에 대한 가속 수명 팩터 선정 및 진동 피로 해석)

  • Han, Hyung-Suk;Jung, Woo-Seoung;Yoon, Kyung-Jong;Mo, Jin-Yong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.3
    • /
    • pp.323-334
    • /
    • 2008
  • According to the delivery condition, the breakage of a product occurs when it is delivered to the customers. Therefore product's makers evaluate the durability under the delivery process by accelerated life testing. In order to conduct this accelerated life testing accurately, it is very important to identify the acceleration-factor exactly between on-road and accelerated life test condition. In this paper, the acceleration-factor is identified by applying linear damage summation law, rain-flow cycle counting and Dirlik theory under the conditions of the random vibration. And approximated FEM model of the connecting-pipe to the compressor is developed for fatigue analysis. This model is finally verified by comparing the experiment results to the numerical analysis results.

Test methodology of acceleration life test on feeder cable assembly (Feeder Cable Assembly의 가속수명시험법 개발)

  • Han, Hyun Kak
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.8
    • /
    • pp.62-68
    • /
    • 2016
  • The feeder cable assembly is an automotive part used for telecommunication. If it malfunctions, the control and safety of the automobile can be put at risk. ALT (Accelerated Life Testing) is a testing process for products in which they are subjected to conditions (stress, strain, temperatures, etc.) in excess of their normal service parameters in an attempt to uncover faults and potential modes of failure in a short amount of time. Failure is caused by defects in the design, process, quality, or application of the part, and these defects are the underlying causes of failure or which initiate a process leading to failure. Thermal shock occurs when a thermal gradient causes different parts of an object to expand by different amounts. Thermal shock testing is performed to determine the ability of parts and components to withstand sudden changes in temperature. In this research, the main causes of failure of the feeder cable assembly were snapping, shorting and electro-pressure resistance failure. Using the Coffin-Manson model for ALT, the normal conditions were from Tmax = $80^{\circ}C$ to Tmin = $-40^{\circ}C$, the accelerated testing conditions were from Tmax = $120^{\circ}C$ to Tmin = $-60^{\circ}C$, the AF (Acceleration Factor) was 2.25 and the testing time was reduced from 1,000 cycles to 444 cycles. Using the Bxlife test, the number of samples was 5, the required life was B0.04%.10years, in the acceleration condition, 747 cycles were obtained. After the thermal shock test under different conditions, the feeder cable assembly was examined by a network analyzer and compared with the Weibull distribution modulus parameter. The results obtained showed good results in acceleration life test mode. For the same reliability rate, the testing time was decreased by a quarter using ALT.

The Accelerated Life Test of 2.5 Inch Hard Disk In The Environment of PC using (PC 사용 환경의 2.5 인치 하드디스크의 가속 수명 시험)

  • Cho, Euy-Hyun;Park, Jeong-Kyu;Seo, Hui-Don
    • Journal of Digital Contents Society
    • /
    • v.15 no.1
    • /
    • pp.19-27
    • /
    • 2014
  • In order to estimate the life of 2,5 inch HDD which is adopted by PC environment, make the test plan which reflect the failure mode of market, make the test model of accelerated life test which reflect the stress of temperature. after an analysis of the environment of PC using, test procedure was decided that operation was write 50 % and read 50 %, and then access method was sequential 50 % and random 50%. The acceleration life test was executed on condition that temperature was $50^{\circ}C$ and $60^{\circ}C$, performance was 95 % in max performance, test time was 1000 hours. by the test of goodness of fit of anderson-darling of the failure data during test, it was confirmed that the distribution of failure fellow weibull. test for shape and scale was equal, and shape parameter was 0.7177, characteristic life was 429434 hours at normal user condition($30^{\circ}C$) by the analysis of weibull-arrhenius modeling. It made no difference about the statistics when equality test was executed. The activation energy was 0.2775eV. In analyzing between the failure samples of acceleration test and the samples of market return even though there is detail difference about the share of failure mode, the rank of share was almost same. This study suggest the test procedure of acceleration test of 2.5 inch HDD in PC using environment, and help the life estimation at manufacture and user.

The Acclerated Life Test of Hard Disk In The Environment of PACS (PACS 환경에서 하드디스크의 가속 수명시험)

  • Cho, Euy-Hyun;Park, Jeong-Kyu;Chae, Jong-Gyu
    • Journal of Digital Contents Society
    • /
    • v.16 no.1
    • /
    • pp.63-70
    • /
    • 2015
  • In this paper, we estimate the life cycle from acceleration life test about the hard disk of disk array of image storage of PACS. Webuil distribution was selected by the Anderson-Darling goodness-of-fit test with data of down time at $50^{\circ}C$ and $60^{\circ}C$. The equality test of shape parameter and scale parameter was conducted, so that the probability distribution estimated from data of down time at $50^{\circ}C$ and $60^{\circ}C$ was not statistically significant. The shape parameter was 1.0409, The characteristic life was 24603.5 hours at normal user condition($30^{\circ}C$) by the analysis of weibull-arrhenius modeling which included the acceleration factor of temperature, and The activation energy was 0.5011 eV through arrhenius modeling. The failure analysis of the failure samples of acceleration test and the samples of market return was conducted, so that the share percentage of failure mode was detail difference but the rank of share percentage was almost same. This study suggest the test procedure of acceleration test of hard disk drive in PACS using environment, and help the life estimation at manufacture and use.

Development of Accelerated Life Test Method for Constant Electrical Potential Electrolysis Gas Sensor (정전위 전해식 가스센서의 가속수명시험법 개발)

  • Yang, Il Young;Kang, Jun Gu;Yu, Sang Woo;Oh, Geun Tae;Na, Yoon Gyoon
    • Journal of Applied Reliability
    • /
    • v.16 no.3
    • /
    • pp.180-191
    • /
    • 2016
  • Purpose: The purpose of this study was to develop the accelerated life test method for Constant Electrical Potential Electrolysis gas sensor (CEPE gas sensor). Methods: The parts and modules of CEPE gas sensor were analyzed by using Reliability Block Diagram (RBD). Failure Mode and Effect Analysis (FMEA) and Quality Function Deployment (QFD) methods were performed for each part to determine the most affecting stress factor in its life cycle. The long term testing was conducted at three different dry heat levels and the acceleration factor was developed by using Arrhenius relationship. Conclusion: The acceleration factor for CEPE gas sensor was developed by using FMEA, QFD, and statistical analysis for its failure data. Also qualification tests were designed to meet the target life.

A Study on the Reliability Prediction about ECM of Packaging Substrate PCB by Using Accelerated Life Test (가속수명시험을 이용한 Packaging Substrate PCB의 ECM에 대한 신뢰성 예측에 관한 연구)

  • Kang, Dae-Joong;Lee, Hwa-Ki
    • Journal of the Korea Safety Management & Science
    • /
    • v.15 no.1
    • /
    • pp.109-120
    • /
    • 2013
  • As information-oriented industry has been developed and electronic devices has come to be smaller, lighter, multifunctional, and high speed, the components used to the devices need to be much high density and should have find pattern due to high integration. Also, diverse reliability problems happen as user environment is getting harsher. For this reasons, establishing and securing products and components reliability comes to key factor in company's competitiveness. It makes accelerated test important to check product reliability in fast way. Out of fine pattern failure modes, failure of Electrochemical Migration(ECM) is kind of degradation of insulation resistance by electro-chemical reaction, which it comes to be accelerated by biased voltage in high temperature and high humidity environment. In this thesis, the accelerated life test for failure caused by ECM on fine pattern substrate, $20/20{\mu}m$ pattern width/space applied by Semi Additive Process, was performed, and through this test, the investigation of failure mechanism and the life-time prediction evaluation under actual user environment was implemented. The result of accelerated test has been compared and estimated with life distribution and life stress relatively by using Minitab software and its acceleration rate was also tested. Through estimated weibull distribution, B10 life has been estimated under 95% confidence level of failure data happened in each test conditions. And the life in actual usage environment has been predicted by using generalized Eyring model considering temperature and humidity by developing Arrhenius reaction rate theory, and acceleration factors by test conditions have been calculated.

Exponentiality Test of the Three Step-Stress Accelerated Life Testing Model based on Kullback-Leibler Information

  • Park, Byung-Gu;Yoon, Sang-Chul;Lee, Jeong-Eun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.14 no.4
    • /
    • pp.951-963
    • /
    • 2003
  • In this paper, we propose goodness of fit test statistics based on the estimated Kullback-Leibler information functions using the data from three step stress accelerated life test. This acceleration model is assumed to be a tampered random variable model. The power of the proposed test under various alternatives is compared with Kolmogorov-Smirnov statistic, Cramer-von Mises statistic and Anderson-Darling statistic.

  • PDF

Accelerated Life Test Design of Bladder Type Accumulator Assembly for Helicopter (헬기용 블래더형 축압기 조립체의 가속수명시험 설계)

  • Kim, Dae-Yu;Hur, Jang-Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.8
    • /
    • pp.239-245
    • /
    • 2018
  • The importance of reliability in the development of weapons systems and reliability tests has been emphasized recently. Therefore, this study evaluated a reliability test design method of a bladder type accumulator and proposed a process for reliability test design. To design the reliability test of the accumulator, the main failure modes and failure mechanisms were investigated, and the main stress factors were analyzed to select the appropriate acceleration model. A steady - state reliability test was designed according to the number of samples, and the reliability level and accelerated life test time were calculated according to the acceleration factor computed using the selected acceleration model.

Acceleration Test Method for Failure Prediction of the End Cap Contact Region of Sodium Cooled Fast Reactor Fuel Rod (소듐냉각 고속로 연료봉단의 접촉부 손상예측을 위한 가속시험 방법)

  • Kim, Hyung-Kyu;Lee, Young-Ho;Lee, Hyun-Seung;Lee, Kang-Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.5
    • /
    • pp.375-380
    • /
    • 2017
  • This paper reports the results of an acceleration test to predict the contact-induced failure that could occur at the cylinder-to-hole joint for the fuel rod of a sodium-cooled fast reactor (SFR). To incorporate the fuel life of the SFR currently under development at KAERI (around 35,000 h), the acceleration test method of reliability engineering was adopted in this work. A finite element method was used to evaluate the flow-induced vibration frequency and amplitude for the test parameter values. Five specimens were tested. The failure criterion during the life of the SFR fuel was applied. The S-N curve of the HT-9, the material of concern, was used to obtain the acceleration factor. As a result, a test time of 16.5 h was obtained for each specimen. It was concluded that the $B_{0.004}$ life would be guaranteed for the SFR fuel rods with 99% confidence if no failure was observed at any of the contact surfaces of the five specimens.

Seismic response evaluation of 154 kV transformer porcelain bushing by shaking table tests

  • Chun, Nakhyun;Jeon, Bubgyu;Kim, Sungwan;Chang, Sungjin;Son, Suwon
    • Structural Engineering and Mechanics
    • /
    • v.84 no.2
    • /
    • pp.155-165
    • /
    • 2022
  • The use of electricity and communication between electronic devices is increasing daily, which makes the stability of electrical power supply vital. Since the 1990s, large earthquakes have occurred frequently causing considerable direct damage to electrical power facilities as well as secondary damage, such as difficulty in restoring functions due to the interruption of electric power supply. Therefore, it is very important to establish measures to protect electrical power facilities, such as transformers and switchboards, from earthquakes. In this study, a 154 kV transformer whose service life had expired was installed on the base fabricated by simulating the field conditions and conducting the shaking table tests. The dynamic characteristics and seismic behavior of the 154 kV transformer were analyzed through the resonance frequency search test and seismic simulation test that considers the front, rear, left, and right directions. Since the purpose of this study is to analyze the acceleration amplification in the bushing due to the acceleration amplification, the experimental results were analyzed focusing on the acceleration response and the converted acceleration amplification ratio rather than the failure due to the displacement response of the transformer. The seismic force amplification at the transformer bushing was evaluated by simulating the characteristics of electrical power facilities in South Korea, and compared with the IEC TS 61463 acceleration amplification factor. Finally, the amplification factor at zero period acceleration (ZPA) modified for each return period was summarized. The results of this study can be used as data to define the amplification factor at ZPA of the transformer bushing, simulating the characteristics of electrical power facilities in Korea.