• Title/Summary/Keyword: Lienard equation

Search Result 2, Processing Time 0.015 seconds

A New Analytical Series Solution with Convergence for Nonlinear Fractional Lienard's Equations with Caputo Fractional Derivative

  • Khalouta, Ali
    • Kyungpook Mathematical Journal
    • /
    • v.62 no.3
    • /
    • pp.583-593
    • /
    • 2022
  • Lienard's equations are important nonlinear differential equations with application in many areas of applied mathematics. In the present article, a new approach known as the modified fractional Taylor series method (MFTSM) is proposed to solve the nonlinear fractional Lienard equations with Caputo fractional derivatives, and the convergence of this method is established. Numerical examples are given to verify our theoretical results and to illustrate the accuracy and effectiveness of the method. The results obtained show the reliability and efficiency of the MFTSM, suggesting that it can be used to solve other types of nonlinear fractional differential equations that arise in modeling different physical problems.

RANGE OF PARAMETER FOR THE EXISTENCE OF PERIODIC SOLUTIONS OF LI$\'{E}$NARD DIFFERENTIAL EQUATIONS

  • Lee, Yong-Hoon
    • Bulletin of the Korean Mathematical Society
    • /
    • v.32 no.2
    • /
    • pp.271-279
    • /
    • 1995
  • In 1986, Fabry, Mawhin and Nkashama [1] have considered periodic solutios for Lienard equation $$ (1_s) x" + f(x)x' + g(t,x) = s, $$ where s is a real parameter, f and g are continuous functions, and g is $2\pi$-periodic in t and have proved that if $$ (H) lim_{$\mid$x$\mid$\to\infty} g(t,x) = \infty uniformly in t \in [0,2\pi], $$ there exists $s_1 \in R$ such that $(1_s)$ has no $2\pi$periodic solution if $s< s_1$, and at least one $2\pi$-periodic solution if $s = s_1$, and at least two $2\pi$-periodic solutions if $s > s_1$.s_1$.

  • PDF