• 제목/요약/키워드: Lie derivation

검색결과 55건 처리시간 0.016초

A Note on Derivations in prime rings

  • 왕문옥;황신철
    • 한국수학사학회지
    • /
    • 제10권2호
    • /
    • pp.24-29
    • /
    • 1997
  • Derivation은 Lie group, Lie ring 그리고 Lie Algebra에서 정의되어 사용되며 발전하였으며 ring에서 일반화 되었다. 역시 prime ring에서 연구되어지는 derivation의 성질들은 prime near-ring에서 일반화 시키려고 하고 있다. 1957년 E. Posner는 prime ring에서 두 개의 derivation의 곱(함수합성)이 derivation이면 이들중 하나의 derivation이 0임을 밝혔다. 본 논문에서는 prime ring에서 derivation이 연구된 역사적인 배경을 소개하고 몇가지 성질을 찾는다. 즉, D. F를 prime ring R의 derivation들이라 할 때 정수 $n{\ge}1$에 대하여 $DF^n$=0이면 D=0이거나 또는 $F^{3n-1}$=0이고, $D^nF$=0이면 $D^{9n-7}$=0 이거나 또는 $F^2$=0 이다.

  • PDF

ON GENERALIZED LIE IDEALS IN SEMI-PRIME RINGS WITH DERIVATION

  • Ozturk, M. Ali;Ceven, Yilmaz
    • East Asian mathematical journal
    • /
    • 제21권1호
    • /
    • pp.1-7
    • /
    • 2005
  • The object of this paper is to study($\sigma,\;\tau$)-Lie ideals in semi-prime rings with derivation. Main result is the following theorem: Let R be a semi-prime ring with 2-torsion free, $\sigma$ and $\tau$ two automorphisms of R such that $\sigma\tau=\tau\sigma$=, U be both a non-zero ($\sigma,\;\tau$)-Lie ideal and subring of R. If $d^2(U)=0$, then d(U)=0 where d a non-zero derivation of R such that $d\sigma={\sigma}d,\;d\tau={\tau}d$.

  • PDF

DERIVATIONS OF THE ODD CONTACT LIE ALGEBRAS IN PRIME CHARACTERISTIC

  • Cao, Yan;Sun, Xiumei;Yuan, Jixia
    • 대한수학회지
    • /
    • 제50권3호
    • /
    • pp.591-605
    • /
    • 2013
  • The underlying field is of characteristic $p$ > 2. In this paper, we first use the method of computing the homogeneous derivations to determine the first cohomology of the so-called odd contact Lie algebra with coefficients in the even part of the generalized Witt Lie superalgebra. In particular, we give a generating set for the Lie algebra under consideration. Finally, as an application, the derivation algebra and outer derivation algebra of the Lie algebra are completely determined.

HOMOMORPHISMS IN PROPER LIE CQ*-ALGEBRAS

  • Lee, Jung Rye;Shin, Dong Yun
    • Korean Journal of Mathematics
    • /
    • 제19권1호
    • /
    • pp.87-99
    • /
    • 2011
  • Using the Hyers-Ulam-Rassias stability method of functional equations, we investigate homomorphisms in proper $CQ^*$-algebras and proper Lie $CQ^*$-algebras, and derivations on proper $CQ^*$-algebras and proper Lie $CQ^*$-algebras associated with the following functional equation $$\frac{1}{k}f(kx+ky+kz)=f(x)+f(y)+f(z)$$ for a fixed positive integer $k$.

A FIXED POINT APPROACH TO THE STABILITY OF QUARTIC LIE ∗-DERIVATIONS

  • Kang, Dongseung;Koh, Heejeong
    • Korean Journal of Mathematics
    • /
    • 제24권4호
    • /
    • pp.587-600
    • /
    • 2016
  • We obtain the general solution of the functional equation $f(ax+y)-f(x-ay)+{\frac{1}{2}}a(a^2+1)f(x-y)+(a^4-1)f(y)={\frac{1}{2}}a(a^2+1)f(x+y)+(a^4-1)f(x)$ and prove the stability problem of the quartic Lie ${\ast}$-derivation by using a directed method and an alternative fixed point method.