• 제목/요약/키워드: Lie algebras

검색결과 83건 처리시간 0.027초

STRONG COMMUTATIVITY PRESERVING MAPS OF UPPER TRIANGULAR MATRIX LIE ALGEBRAS OVER A COMMUTATIVE RING

  • Chen, Zhengxin;Zhao, Yu'e
    • 대한수학회보
    • /
    • 제58권4호
    • /
    • pp.973-981
    • /
    • 2021
  • Let R be a commutative ring with identity 1, n ≥ 3, and let 𝒯n(R) be the linear Lie algebra of all upper triangular n × n matrices over R. A linear map 𝜑 on 𝒯n(R) is called to be strong commutativity preserving if [𝜑(x), 𝜑(y)] = [x, y] for any x, y ∈ 𝒯n(R). We show that an invertible linear map 𝜑 preserves strong commutativity on 𝒯n(R) if and only if it is a composition of an idempotent scalar multiplication, an extremal inner automorphism and a linear map induced by a linear function on 𝒯n(R).

ON THE STRUCTURE OF FACTOR LIE ALGEBRAS

  • Arabyani, Homayoon;Panbehkar, Farhad;Safa, Hesam
    • 대한수학회보
    • /
    • 제54권2호
    • /
    • pp.455-461
    • /
    • 2017
  • The Lie algebra analogue of Schur's result which is proved by Moneyhun in 1994, states that if L is a Lie algebra such that dimL/Z(L) = n, then $dimL_{(2)}={\frac{1}{2}}n(n-1)-s$ for some non-negative integer s. In the present paper, we determine the structure of central factor (for s = 0) and the factor Lie algebra $L/Z_2(L)$ (for all $s{\geq}0$) of a finite dimensional nilpotent Lie algebra L, with n-dimensional central factor. Furthermore, by using the concept of n-isoclinism, we discuss an upper bound for the dimension of $L/Z_n(L)$ in terms of $dimL_{(n+1)}$, when the factor Lie algebra $L/Z_n(L)$ is finitely generated and $n{\geq}1$.

INVARIANT RINGS AND DUAL REPRESENTATIONS OF DIHEDRAL GROUPS

  • Ishiguro, Kenshi
    • 대한수학회지
    • /
    • 제47권2호
    • /
    • pp.299-309
    • /
    • 2010
  • The Weyl group of a compact connected Lie group is a reflection group. If such Lie groups are locally isomorphic, the representations of the Weyl groups are rationally equivalent. They need not however be equivalent as integral representations. Turning to the invariant theory, the rational cohomology of a classifying space is a ring of invariants, which is a polynomial ring. In the modular case, we will ask if rings of invariants are polynomial algebras, and if each of them can be realized as the mod p cohomology of a space, particularly for dihedral groups.

Complete Reducibility of some Modules for a Generalized Kac Moody Lie Algebra

  • Kim, Wansoon
    • 충청수학회지
    • /
    • 제5권1호
    • /
    • pp.195-201
    • /
    • 1992
  • Let G(A) denote a generalized Kac Moody Lie algebra associated to a symmetrizable generalized Cartan matrix A. In this paper, we study on representations of G(A). Highest weight modules and the category O are described. In the main theorem we show that some G(A) modules from the category O are completely reducible. Also a criterion for irreducibility of highest weight modules is obtained. This was proved in [3] for the case of Kac Moody Lie algebras.

  • PDF

A NOTE ON THE ROOT SPACES OF AFFINE LIE ALGEBRAS OF TYPE $D_{\iota}^{(1)}$

  • KIM YEONOK
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제12권1호
    • /
    • pp.65-73
    • /
    • 2005
  • Let g = g(A) = (equation omitted) + be a symmetrizable Kac-Moody Lie algebra of type D/sub l//sup (1) with W as its Weyl group. We construct a sequence of root spaces with certain conditions. We also find the number of terms of this sequence is less then or equal to the hight of θ, the highest root.

  • PDF

NILPOTENCY OF THE RICCI OPERATOR OF PSEUDO-RIEMANNIAN SOLVMANIFOLDS

  • Huihui An;Shaoqiang Deng;Zaili Yan
    • 대한수학회보
    • /
    • 제61권3호
    • /
    • pp.867-873
    • /
    • 2024
  • A pseudo-Riemannian solvmanifold is a solvable Lie group endowed with a left invariant pseudo-Riemannian metric. In this short note, we investigate the nilpotency of the Ricci operator of pseudo-Riemannian solvmanifolds. We focus on a special class of solvable Lie groups whose Lie algebras can be expressed as a one-dimensional extension of a nilpotent Lie algebra ℝD⋉n, where D is a derivation of n whose restriction to the center of n has at least one real eigenvalue. The main result asserts that every solvable Lie group belonging to this special class admits a left invariant pseudo-Riemannian metric with nilpotent Ricci operator. As an application, we obtain a complete classification of three-dimensional solvable Lie groups which admit a left invariant pseudo-Riemannian metric with nilpotent Ricci operator.

LIE IDEALS IN TRIDIAGONAL ALGEBRA ALG𝓛

  • Kang, Joo Ho
    • 대한수학회보
    • /
    • 제52권2호
    • /
    • pp.351-361
    • /
    • 2015
  • We give examples of Lie ideals in a tridiagonal algebra $Alg\mathcal{L}_{\infty}$ and study some properties of Lie ideals in $Alg\mathcal{L}_{\infty}$. We also investigate relationships between Lie ideals in $Alg\mathcal{L}_{\infty}$. Let k be a fixed natural number. Let $\mathcal{A}$ be a linear manifold in $Alg\mathcal{L}_{\infty}$ such that $T_{(2k-1,2k)}=0$ for all $T{\in}\mathcal{A}$. Then $\mathcal{A}$ is a Lie ideal if and only if $T_{(2k-1,2k-1)}=T_{(2k,2k)}$ for all $T{\in}\mathcal{A}$.

DERIVATIONS OF THE ODD CONTACT LIE ALGEBRAS IN PRIME CHARACTERISTIC

  • Cao, Yan;Sun, Xiumei;Yuan, Jixia
    • 대한수학회지
    • /
    • 제50권3호
    • /
    • pp.591-605
    • /
    • 2013
  • The underlying field is of characteristic $p$ > 2. In this paper, we first use the method of computing the homogeneous derivations to determine the first cohomology of the so-called odd contact Lie algebra with coefficients in the even part of the generalized Witt Lie superalgebra. In particular, we give a generating set for the Lie algebra under consideration. Finally, as an application, the derivation algebra and outer derivation algebra of the Lie algebra are completely determined.