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NILPOTENCY OF THE RICCI OPERATOR OF

PSEUDO-RIEMANNIAN SOLVMANIFOLDS

Huihui An, Shaoqiang Deng, and Zaili Yan

Abstract. A pseudo-Riemannian solvmanifold is a solvable Lie group

endowed with a left invariant pseudo-Riemannian metric. In this short
note, we investigate the nilpotency of the Ricci operator of pseudo-Rie-

mannian solvmanifolds. We focus on a special class of solvable Lie groups
whose Lie algebras can be expressed as a one-dimensional extension of a

nilpotent Lie algebra RD⋉n, where D is a derivation of n whose restriction

to the center of n has at least one real eigenvalue. The main result asserts
that every solvable Lie group belonging to this special class admits a left

invariant pseudo-Riemannian metric with nilpotent Ricci operator. As an

application, we obtain a complete classification of three-dimensional solv-
able Lie groups which admit a left invariant pseudo-Riemannian metric

with nilpotent Ricci operator.

1. Introduction

Ricci curvature is an important quantity in differential geometry. In 1976,
Milnor [15] studied Ricci curvature of a left invariant Riemannian metric on
a Lie group and obtained several interesting results. For instance, a nilpotent
Lie group admits a left invariant Riemannian metric with vanishing Ricci cur-
vature if and only if it is Abelian. Later, in 1979, Nomizu [16] studied left
invariant Lorentz metrics on Lie groups and found that the three-dimensional
Heisenberg group admits a left invariant Lorentz metric with vanishing Ricci
curvature. Recently, Conti, del Barco and Rossi [4–7] studied left invariant
pseudo-Riemannian Einstein metrics on nice Lie groups extensively. They
showed that there are plenty of nilpotent Lie groups admitting left invariant
pseudo-Riemannian metrics with vanishing Ricci curvature. Unlike the Rie-
mannian case, the existence of a left invariant pseudo-Riemannian Ricci flat
metric seems to be a more common phenomenon. In fact, the authors in [4]
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posed a question whether every nilpotent Lie group admits a left invariant
pseudo-Riemannian Ricci flat metric. For more results on this topic, we refer
the readers to [1, 10–12,14] for the Riemannian case, and [3,8] for the pseudo-
Riemannian case. In this paper, we investigate the nilpotency of the Ricci
operator of a left invariant pseudo-Riemannian metric on a connected solvable
Lie group. More precisely, we consider the following problem:

Problem. Which Lie groups admit a left invariant pseudo-Riemannian metric
with nilpotent Ricci operator?

This paper focus on a special class G of solvable Lie groups, namely, those
Lie groups G whose Lie algebras g can be expressed as a semi-product RD⋉n,
where n is a nilpotent Lie algebra with center C(n), and D is a derivation of
n such that the restriction D|C(n) has at least one real eigenvalue. We should
mention that, this construction is a special kind of the double extension of
nilpotent Lie algebras in the sense of [13]. Clearly, every nilpotent Lie group
belongs to G. Our main result is the following

Theorem 1.1. Every solvable Lie group belonging to G admits a left invariant
pseudo-Riemannian metric with nilpotent Ricci operator.

As an interesting consequence, we have:

Corollary 1.2. Every nilpotent Lie group admits a left invariant pseudo-
Riemannian metric with nilpotent Ricci operator.

We remark here that this result is significant, since, as we mentioned above,
a nilpotent Lie group admits a left invariant Riemannian metric with vanishing
scalar curvature (nilpotent Ricci operator) if and only if it is Abelian [15].

Next we consider the Ricci operator of left invariant pseudo-Riemannian
metrics on three-dimensional solvable Lie groups. It is well known [9] that,
for any three-dimensional real solvable Lie algebra which is not Abelian, there
exists a basis {h0, e1, e2} such that one of the following conditions holds:

q : [h0, e1] = e1, [h0, e2] = e2, [e1, e2] = 0;

rα : [h0, e1] = e2, [h0, e2] = αe1, [e1, e2] = 0, α = 0, −1 or 1;

sβ : [h0, e1] = e2, [h0, e2] = βe1 + e2, [e1, e2] = 0, β ∈ R.

Remark 1.3. Clearly, the Lie algebras q, r0 and r1 are contained in the class G,
r−1 is not contained in the class G. For the Lie algebras sβ , β ∈ R, note that
the matrix of adh0 relative to the basis {e1, e2} is(

0 β
1 1

)
,

which has a real eigenvalue if and only if β ≥ − 1
4 . This asserts that sβ are

contained in the class G if and only if β ≥ − 1
4 .

We prove the following:
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Theorem 1.4. A three-dimensional solvable Lie group admits a left invariant
pseudo-Riemannian metric with nilpotent Ricci operator if and only if its Lie
algebra is either Abelian or is isomorphic to one of the Lie algebras q, r0, r−1,
r1 and sβ, where β ≥ − 1

4 .

Corollary 1.5. There are infinitely many three-dimensional solvable Lie groups
which are non-isometric to each other and do not admit any left invariant
pseudo-Riemannian Ricci flat metrics.

2. Preliminaries

Let G be a connected Lie group with Lie algebra g consisting of left invariant
vector fields and ⟨·, ·⟩ be a left invariant pseudo-Riemannian metric on G. Let
∇ be the Levi-Civita connection associated with ⟨·, ·⟩, and x, y, z, u, v ∈ g. Then

[x, y] = ∇xy −∇yx,

⟨∇xy, z⟩ =
1

2
(⟨[x, y], z⟩ − ⟨[y, z], x⟩+ ⟨[z, x], y⟩).

The curvature tensor is given by

R(x, y)z = ∇x∇yz −∇y∇xz −∇[x,y]z.

The (0,2)-Ricci tensor ric associated with ⟨·, ·⟩ is

ric(u, v) = tr(x 7→ R(x, u)v),

and the Ricci operator Ric is defined by

⟨Ric(u), v⟩ = ric(u, v).

The mean curvature vector Z ∈ g associated with (g, ⟨·, ·⟩) is given by

⟨Z, x⟩ = tr (adx).

Note that g is unimodular if and only if Z = 0.

Lemma 2.1 ([2, 17]). Let {ei} be an orthonormal basis of (g, ⟨·, ·⟩). Then

ric(x, y) = − 1

2

∑
i

⟨[x, ei], [y, ei]⟩εi +
1

4

∑
i,j

⟨[ei, ej ], x⟩⟨[ei, ej ], y⟩εiεj

− 1

2
K(x, y)− 1

2
(⟨[Z, x], y⟩+ ⟨[Z, y], x⟩),

where x, y ∈ g, εi = ⟨ei, ei⟩ ∈ {1,−1}, K is the Killing form of g, and Z
denotes the mean curvature vector associated with (g, ⟨·, ·⟩).
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3. Proof of Theorem 1.1 and Theorem 1.4

Proof of Theorem 1.1. We will prove the theorem inductively on dim g. In the
case of dim g = 1, the Lie algebra g is Abelian and hence any left invariant
pseudo-Riemannian metric on g has vanishing Riemann curvature tensor. If
dim g = 2, then g is either Abelian or has a basis {x, y} such that [x, y] = y.
In this case there also exists a left invariant Lorentz flat metric on g [16].

Now assume dim g ≥ 3 and v is a non-zero vector in the center of n satisfying
Dv ∈ Rv. Let n0 be a subspace of n complementary to Rv. Then the Lie bracket
[·, ·]n of n induces a Lie bracket [·, ·]0 on n0 defined by

[x, y]n = [x, y]0 + θ(x, y)v, ∀x, y ∈ n0,

where [x, y]0 ∈ n0 and θ : n0 × n0 → R is a cocycle satisfying

θ([x, y]0, z) + θ([y, z]0, x) + θ([z, x]0, y) = 0, ∀x, y, z ∈ n0.

It is easily seen that (n0, [·, ·]0) is isomorphic to n/Rv and hence nilpotent. By
the assumption, there exists a left invariant pseudo-Riemannian metric ⟨·, ·⟩0
on (n0, [·, ·]0) with nilpotent Ricci operator Ric0. We now define a left invariant
pseudo-Riemannian metric ⟨·, ·⟩ on g = RD ⋉ n = RD + n0 + Rv by

⟨D, v⟩ = 1, ⟨D,D⟩ = ⟨v, v⟩ = ⟨D, n0⟩ = ⟨v, n0⟩ = 0, ⟨x, y⟩ = ⟨x, y⟩0, ∀x, y ∈ n0.

It is sufficient to show that the Ricci operator Ric of (g, ⟨·, ·⟩) is nilpotent.
Let {ei} be an orthonormal basis of (n0, [·, ·]0, ⟨·, ·⟩0), and denote εi = ⟨ei, ei⟩0 ∈
{1,−1}. Then {ei, D+v√

2
, D−v√

2
} forms an orthonormal basis of (g, ⟨·, ·⟩), where〈

D + v√
2

,
D + v√

2

〉
= −

〈
D − v√

2
,
D − v√

2

〉
= 1.

Notice that the mean curvature vector in (g, ⟨·, ·⟩) is Z = (trD)v, and hence
⟨[Z, g], n⟩ = 0. Moreover, one has ⟨[g, g], v⟩ = ⟨n, v⟩ = 0 and K(g, n) = 0. Now
by the formula in Lemma 2.1, given any x ∈ g, we have

⟨Ric(v), x⟩ = − 1

2

〈
[v,

D + v√
2

], [x,
D + v√

2
]

〉
+

1

2

〈
[v,

D − v√
2

], [x,
D − v√

2
]

〉
− 1

2
(⟨[Z, v], x⟩+ ⟨[Z, x], v⟩)

= 0.

This implies that Ric(v) = 0 and Ric(g) ⊂ n.
Furthermore, for any x, y ∈ n0, we have

⟨Ric(x), y⟩

= − 1

2

(〈
[x,

D + v√
2

], [y,
D + v√

2
]

〉
−
〈
[x,

D − v√
2

], [y,
D − v√

2
]

〉)
− 1

2

∑
i

⟨[x, ei], [y, ei]⟩εi −
1

2

〈
[
D + v√

2
,
D − v√

2
], x

〉〈
[
D + v√

2
,
D − v√

2
], y

〉
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+
1

2

∑
i

〈
[
D + v√

2
, ei], x

〉〈
[
D + v√

2
, ei], y

〉
εi

+
1

2

∑
i

〈
[
D − v√

2
, ei], x

〉〈
[
D − v√

2
, ei], y

〉
(−εi)

+
1

4

∑
i,j

⟨[ei, ej ], x⟩⟨[ei, ej ], y⟩εiεj

= − 1

2

∑
i

⟨[x, ei], [y, ei]⟩εi +
1

4

∑
i,j

⟨[ei, ej ], x⟩⟨[ei, ej ], y⟩εiεj

= − 1

2

∑
i

⟨[x, ei]0, [y, ei]0⟩0εi +
1

4

∑
i,j

⟨[ei, ej ]0, x⟩0⟨[ei, ej ]0, y⟩0εiεj

= ⟨Ric0(x), y⟩0.

This implies that Ric|n0 = Ric0. Therefore, the matrix of Ric : g → g relative
to the basis {D, ei, v} is  0 0 0

∗ Ric0 0
∗ ∗ 0

 ,

which is a nilpotent matrix. This completes the proof of the theorem. □

Proof of Theorem 1.4. Keep the notations as above. Let (g = Rh0 + Re1 +
Re2, ⟨·, ·⟩) be a three-dimensional non-Abelian solvable Lie algebra with a left
invariant pseudo-Riemannian metric ⟨·, ·⟩ such that the Ricci operator Ric :
g → g is nilpotent. We will show that g = r−1 or g is in the class G, and
consequently the theorem follows from Theorem 1.1, Remark 1.3 and a result
of Milnor [15] that r−1 admits a left invariant Riemannian flat metric. Denote
E = Re1+Re2. Then we have [g, g] ⊂ E and K(g, E) = 0. According as ⟨·, ·⟩|E
is degenerate or not, we have the following two cases:

Case I: E is nondegenerate, namely, the restriction of the metric ⟨·, ·⟩ to E
is nondegenerate. In this case, there exists an orthonormal basis {H,X1, X2}
of g such that X1, X2 ∈ E, adH(E) ⊂ E, δH = ⟨H,H⟩ ∈ {1,−1}, ε1 =
⟨X1, X1⟩ ∈ {1,−1}, ε2 = ⟨X2, X2⟩ ∈ {1,−1}. Notice that the mean curvature
vector Z = (δHtr adH|E)H and ⟨Z,E⟩ = 0. Since [E,E] = 0, by Lemma 2.1
(see also Proposition 1.10 of [8]) we have

ric(H, e) = −1

2
⟨[H,X1], [e,X1]⟩ε1 −

1

2
⟨[H,X2], [e,X2]⟩ε2 = 0, ∀e ∈ E.

This implies that Ric(H) ∈ RH, Ric(E) ⊂ E. Furthermore, for any e, e′ ∈ E,

ric(e, e′) = − 1

2
δHtr adH|E(⟨[H, e], e′⟩+ ⟨e, [H, e′]⟩)− 1

2
⟨[H, e], [H, e′]⟩δH

+
1

2

2∑
i=1

⟨[H,Xi], e⟩⟨[H,Xi], e
′⟩δHεi
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= − 1

2
δHtr adH|E⟨(adH|E + (adH|E)∗)(e), e′⟩

− 1

2
δH

〈(
(adH|E)∗adH|E

)
(e), e′

〉
+

1

2
δH

〈(
(adH|E)(adH|E)∗

)
(e), e′

〉
.

Therefore,

Ric|E = − 1

2
δHtr adH|E

(
adH|E + (adH|E)∗

)
− 1

2
δH

(
(adH|E)∗adH|E − (adH|E)(adH|E)∗

)
.

Since Ric is nilpotent, Ric|E is nilpotent and trRic|E = 0. So we have
(tr adH|E)2 = 0 and tr adH|E = 0. This implies that g is unimodular. Hence
g is isomorphic to r0, r−1 or r1.

Case II: E is degenerate, namely, the restriction of the metric ⟨·, ·⟩ to E is
degenerate. In this case, there exist two vectors X,Y ∈ E such that

⟨X,X⟩ ∈ {1,−1}, ⟨X,Y ⟩ = ⟨Y, Y ⟩ = 0.

In the orthogonal complement (RX)⊥ of g there exists a vector H ∈ g\E such
that

⟨H,H⟩ = 0, ⟨H,Y ⟩ = 1.

Then {H+Y√
2
, H−Y√

2
, X} forms an orthonormal basis of (g, ⟨·, ·⟩). The mean cur-

vature vector Z = (tr adH)Y ∈ E. By a direct calculation, we get

ric(X,X) = −1

2
⟨[H + Y√

2
,
H − Y√

2
], X⟩2 = −1

2
⟨[H,Y ], X⟩2,

ric(X,Y ) = ric(Y, Y ) = 0.

Thus the matrix of Ric relative to the basis {H,X, Y } is

M(Ric;H,X, Y ) =

 ∗ 0 0
∗ γ0 0
∗ ∗ ∗

 ,

where γ0 = ric(X,X)
⟨X,X⟩ = − ⟨[H,Y ],X⟩2

2⟨X,X⟩ . As Ric is nilpotent, we have γ0 = 0.

Therefore [H,Y ] ∈ RY . Consequently, adh0|E has a real eigenvalue and g is
in the class G. This completes the proof of the theorem. □
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[13] A. Medina and P. Revoy, Algèbres de Lie et produit scalaire invariant, Ann. Sci. École
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