• Title/Summary/Keyword: Lidar

Search Result 609, Processing Time 0.022 seconds

Measurement of Cloud Velocity and Altitude Using Lidar's Range Detection and Digital Image Correlation

  • Park, Nak-Gyu;Baik, Sung-Hoon;Park, Seung-Kyu;Kim, Dong-Lyul;Kim, Duk-Hyeon;Choi, In-Young
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.5
    • /
    • pp.605-610
    • /
    • 2014
  • Clouds play an important role in climate change, in the prediction of local weather, and also in aviation safety when instrument assisted flying is unavailable. Presently, various ground-based instruments used for the measurements of the cloud base height or velocity. Lidar techniques are powerful and have many applications in climate studies, including the clouds' temperature measurement, the aerosol particle properties, etc. Otherwise, it is very circumscribed in cloud velocity measurements because there is no Doppler effect if the clouds move in the perpendicular direction to the laser beam path of Doppler lidar. In this paper, we present a method for the measurement of cloud velocity using lidar's range detection and DIC (Digital Image Correlation) system to overcome the disadvantage of Doppler lidar. The lidar system acquires the distance to the cloud, and the cloud images are tracked using the developed fast correlation algorithm of DIC. We acquired the velocities of clouds using the calculated distance and DIC algorithm. The measurement values had a linear distribution.

Doppler LIDAR Measurement of Wind in the Stratosphere

  • Dong, Jihui;Cha, Hyun-Ki;Kim, Duk-Hyeon;Baik, Sung-Hoon;Wang, Guocheng;Tang, Lei;Shu, Zhifeng;Xu, Wenjing;Hu, Dongdong;Sun, Dongsong
    • Journal of the Optical Society of Korea
    • /
    • v.14 no.3
    • /
    • pp.199-203
    • /
    • 2010
  • A mobile direct detection Doppler LIDAR based on molecular backscattering for measurement of wind in the stratosphere has been developed in Hefei, China. First, the principle of wind measurement with direct detection Doppler LIDAR is presented. Then the configuration of the LIDAR system is described. Finally, the primary experimental results are provided and analyzed. The results indicate that the detection range of the designed Doppler LIDAR reached 50 km altitude, and there is good consistency between the molecular Doppler wind LIDAR(DWL) and the wind profile radar(WPR) in the low troposphere.

Digital Orthophoto Generation from LIDAR Data (LIDAR 데이터를 이용한 수치정사사진의 제작)

  • 김형태;심용운;박승룡;김용일
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.20 no.2
    • /
    • pp.137-143
    • /
    • 2002
  • In this study we generated digital orthophoto from LIDAR data. To generate digital orthophoto, we make TIN from raw laser scanning data(XYZ point data) and compiled DSM from this TIN. In this procedure much noise appeared along the break lines in DSM and this can give bad effect to the quality of digital orthophoto. Therefore, we applied various techniques which can refine the break line. In the result, we concluded that the fusion of LIDAR DEM of lowland and extracted buildings was adequate to generating DSM. So we generated the digital orthophoto from DSM generated from this technique. In the result of quality test, the positional accuracy of this digital orthophoto was better than the positional accuracy of 1:5,000 map.

Performance of Continuous-wave Coherent Doppler Lidar for Wind Measurement

  • Jiang, Shan;Sun, Dongsong;Han, Yuli;Han, Fei;Zhou, Anran;Zheng, Jun
    • Current Optics and Photonics
    • /
    • v.3 no.5
    • /
    • pp.466-472
    • /
    • 2019
  • A system for continuous-wave coherent Doppler lidar (CW lidar), made up of all-fiber structures and a coaxial transmission telescope, was set up for wind measurement in Hefei (31.84 N, 117.27 E), Anhui province of China. The lidar uses a fiber laser as a light source at a wavelength of $1.55{\mu}m$, and focuses the laser beam on a location 80 m away from the telescope. Using the CW lidar, radial wind measurement was carried out. Subsequently, the spectra of the atmospheric backscattered signal were analyzed. We tested the noise and obtained the lower limit of wind velocity as 0.721 m/s, through the Rayleigh criterion. According to the number of Doppler peaks in the radial wind spectrum, a classification retrieval algorithm (CRA) combining a Gaussian fitting algorithm and a spectral centroid algorithm is designed to estimate wind velocity. Compared to calibrated pulsed coherent wind lidar, the correlation coefficient for the wind velocity is 0.979, with a standard deviation of 0.103 m/s. The results show that CW lidar offers satisfactory performance and the potential for application in wind measurement.

Accuracy Assessment of DTM Generation Using LIDAR Data (LIDAR 자료를 이용한 DTM 생성 정확도 평가)

  • Yoo Hwan Hee;Kim Seong Sam;Chung Dong Ki;Hong Jae Min
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.23 no.3
    • /
    • pp.261-272
    • /
    • 2005
  • 3D models in urban areas are essential for a variety of applications, such as virtual visualization, GIS, and mobile communications. LIDAR (Light Detection and Ranging) is a relatively new technology for obtaining Digital Terrain Models (DTM) of the earth's surface since manual 3D data reconstruction is very costly and time consuming. In this paper an approach to extract ground and non-ground points data from LIDAR data by using filtering is presented and the accuracy for generating DTM from ground points data is evaluated. Numerous filter algorithms have been developed to date. To determine the performance of filtering, we selected three filters which are based on the concepts for height difference, slope, and morphology, and also were applied two different data acquired from high raised apartments areas and low house areas. From the results it has been found that the accuracy for generating DTM from LIDAR data are 0.16 m and 0.59 m in high raised apartments areas and low house areas respectively. We expect that LIDAR data is used to generate the accurate DTM in urban areas.

Automatic Building Extraction Using LIDAR and Aerial Image (LIDAR 데이터와 수치항공사진을 이용한 건물 자동추출)

  • Jeong, Jae-Wook;Jang, Hwi-Jeong;Kim, Yu-Seok;Cho, Woo-Sug
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.13 no.3 s.33
    • /
    • pp.59-67
    • /
    • 2005
  • Building information is primary source in many applications such as mapping, telecommunication, car navigation and virtual city modeling. While aerial CCD images which are captured by passive sensor(digital camera) provide horizontal positioning in high accuracy, it is far difficult to process them in automatic fashion due to their inherent properties such as perspective projection and occlusion. On the other hand, LIDAR system offers 3D information about each surface rapidly and accurately in the form of irregularly distributed point clouds. Contrary to the optical images, it is much difficult to obtain semantic information such as building boundary and object segmentation. Photogrammetry and LIDAR have their own major advantages and drawbacks for reconstructing earth surfaces. The purpose of this investigation is to automatically obtain spatial information of 3D buildings by fusing LIDAR data with aerial CCD image. The experimental results show that most of the complex buildings are efficiently extracted by the proposed method and signalize that fusing LIDAR data and aerial CCD image improves feasibility of the automatic detection and extraction of buildings in automatic fashion.

  • PDF

A Study on the Stability Analysis of Underground Mine using LIDAR (LIDAR를 활용한 지하광산의 안정성 분석에 관한 연구)

  • Lee, Seung-Joong;Kim, Byung-Ryeol;Jin, Yeon-Ho;Choi, Sung-Oong
    • Tunnel and Underground Space
    • /
    • v.27 no.6
    • /
    • pp.406-421
    • /
    • 2017
  • This study describes a precise numerical analysis process by adopting the real image of mine openings obtained by LIDAR, which can produce a point cloud data by measuring the target surface numerically. Research area is a section of underground limestone mine which is used hybrid room-and-pillar method for improving the production rate. From the application of LIDAR to this section several results were deduced, that is, the central axis of upper and lower vertical safety pillars is distorted to the direction of NW and the section area of lower vertical safety pillar is $34m^2$ smaller than the designed area of $100m^2$. The results of precise measurement in geometrical shape of mine openings and precise simulation in numerical analysis confirms that LIDAR techniques can be suggested as a valuable tool for stability analysis in underground mine by configuring the mine opening shape.

Complexity Estimation Based Work Load Balancing for a Parallel Lidar Waveform Decomposition Algorithm

  • Jung, Jin-Ha;Crawford, Melba M.;Lee, Sang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.6
    • /
    • pp.547-557
    • /
    • 2009
  • LIDAR (LIght Detection And Ranging) is an active remote sensing technology which provides 3D coordinates of the Earth's surface by performing range measurements from the sensor. Early small footprint LIDAR systems recorded multiple discrete returns from the back-scattered energy. Recent advances in LIDAR hardware now make it possible to record full digital waveforms of the returned energy. LIDAR waveform decomposition involves separating the return waveform into a mixture of components which are then used to characterize the original data. The most common statistical mixture model used for this process is the Gaussian mixture. Waveform decomposition plays an important role in LIDAR waveform processing, since the resulting components are expected to represent reflection surfaces within waveform footprints. Hence the decomposition results ultimately affect the interpretation of LIDAR waveform data. Computational requirements in the waveform decomposition process result from two factors; (1) estimation of the number of components in a mixture and the resulting parameter estimates, which are inter-related and cannot be solved separately, and (2) parameter optimization does not have a closed form solution, and thus needs to be solved iteratively. The current state-of-the-art airborne LIDAR system acquires more than 50,000 waveforms per second, so decomposing the enormous number of waveforms is challenging using traditional single processor architecture. To tackle this issue, four parallel LIDAR waveform decomposition algorithms with different work load balancing schemes - (1) no weighting, (2) a decomposition results-based linear weighting, (3) a decomposition results-based squared weighting, and (4) a decomposition time-based linear weighting - were developed and tested with varying number of processors (8-256). The results were compared in terms of efficiency. Overall, the decomposition time-based linear weighting work load balancing approach yielded the best performance among four approaches.

Characteristics of Airborne Lidar Data and Ground Points Separation in Forested Area (산림지역에서의 항공 Lidar 자료의 특성 및 지면점 분리)

  • Yoon, Jong-Suk;Lee, Kyu-Sung;Shin, Jung-Il;Woo, Choong-Shik
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.6
    • /
    • pp.533-542
    • /
    • 2006
  • Lidar point clouds provide three dimensional information of terrain surface and have a great advantage to generate precise digital elevation model (DEM), particularly over forested area where some laser signals are transmitted to vegetation canopy and reflected from the bare ground. This study initially investigates the characteristics of lidar-derived height information as related to vertical structure of forest stands. Then, we propose a new filtering method to separate ground points from Lidar point clouds, which is a prerequisite process both to generate DEM surface and to extract biophysical information of forest stands. Laser points clouds over the forest stands in central Korea show that the vertical distribution of laser points greatly varies by the stand characteristics. Based on the characteristics, the proposed filtering method processes first and last returns simultaneously without setting any threshold value. The ground points separated by the proposed method are used to generate digital elevation model, furthermore, the result provides the possibilities to extract other biophysical characteristics of forest.

Analysis of Eye-safe LIDAR Signal under Various Measurement Environments and Reflection Conditions (다양한 측정 환경 및 반사 조건에 대한 시각안전 LIDAR 신호 분석)

  • Han, Mun Hyun;Choi, Gyu Dong;Seo, Hong Seok;Mheen, Bong Ki
    • Korean Journal of Optics and Photonics
    • /
    • v.29 no.5
    • /
    • pp.204-214
    • /
    • 2018
  • Since LIDAR is advantageous for accurate information acquisition and realization of a high-resolution 3D image based on characteristics that can be precisely measured, it is essential to autonomous navigation systems that require acquisition and judgment of accurate peripheral information without user intervention. Recently, as an autonomous navigation system applying LIDAR has been utilized in human living space, it is necessary to solve the eye-safety problem, and to make reliable judgment through accurate obstacle recognition in various environments. In this paper, we construct a single-shot LIDAR system (SSLs) using a 1550-nm eye-safe light source, and report the analysis method and results of LIDAR signals for various measurement environments, reflective materials, and material angles. We analyze the signals of materials with different reflectance in each measurement environment by using a 5% Al reflector and a building wall located at a distance of 25 m, under indoor, daytime, and nighttime conditions. In addition, signal analysis of the angle change of the material is carried out, considering actual obstacles at various angles. This signal analysis has the merit of possibly confirming the correlation between measurement environment, reflection conditions, and LIDAR signal, by using the SNR to determine the reliability of the received information, and the timing jitter, which is an index of the accuracy of the distance information.