• 제목/요약/키워드: Library Network

검색결과 732건 처리시간 0.028초

Prediction of pollution loads in the Geum River upstream using the recurrent neural network algorithm

  • Lim, Heesung;An, Hyunuk;Kim, Haedo;Lee, Jeaju
    • 농업과학연구
    • /
    • 제46권1호
    • /
    • pp.67-78
    • /
    • 2019
  • The purpose of this study was to predict the water quality using the RNN (recurrent neutral network) and LSTM (long short-term memory). These are advanced forms of machine learning algorithms that are better suited for time series learning compared to artificial neural networks; however, they have not been investigated before for water quality prediction. Three water quality indexes, the BOD (biochemical oxygen demand), COD (chemical oxygen demand), and SS (suspended solids) are predicted by the RNN and LSTM. TensorFlow, an open source library developed by Google, was used to implement the machine learning algorithm. The Okcheon observation point in the Geum River basin in the Republic of Korea was selected as the target point for the prediction of the water quality. Ten years of daily observed meteorological (daily temperature and daily wind speed) and hydrological (water level and flow discharge) data were used as the inputs, and irregularly observed water quality (BOD, COD, and SS) data were used as the learning materials. The irregularly observed water quality data were converted into daily data with the linear interpolation method. The water quality after one day was predicted by the machine learning algorithm, and it was found that a water quality prediction is possible with high accuracy compared to existing physical modeling results in the prediction of the BOD, COD, and SS, which are very non-linear. The sequence length and iteration were changed to compare the performances of the algorithms.

Prediction of the DO concentration using the machine learning algorithm: case study in Oncheoncheon, Republic of Korea

  • Lim, Heesung;An, Hyunuk;Choi, Eunhyuk;Kim, Yeonsu
    • 농업과학연구
    • /
    • 제47권4호
    • /
    • pp.1029-1037
    • /
    • 2020
  • The machine learning algorithm has been widely used in water-related fields such as water resources, water management, hydrology, atmospheric science, water quality, water level prediction, weather forecasting, water discharge prediction, water quality forecasting, etc. However, water quality prediction studies based on the machine learning algorithm are limited compared to other water-related applications because of the limited water quality data. Most of the previous water quality prediction studies have predicted monthly water quality, which is useful information but not enough from a practical aspect. In this study, we predicted the dissolved oxygen (DO) using recurrent neural network with long short-term memory model recurrent neural network long-short term memory (RNN-LSTM) algorithms with hourly- and daily-datasets. Bugok Bridge in Oncheoncheon, located in Busan, where the data was collected in real time, was selected as the target for the DO prediction. The 10-month (temperature, wind speed, and relative humidity) data were used as time prediction inputs, and the 5-year (temperature, wind speed, relative humidity, and rainfall) data were used as the daily forecast inputs. Missing data were filled by linear interpolation. The prediction model was coded based on TensorFlow, an open-source library developed by Google. The performance of the RNN-LSTM algorithm for the hourly- or daily-based water quality prediction was tested and analyzed. Research results showed that the hourly data for the water quality is useful for machine learning, and the RNN-LSTM algorithm has potential to be used for hourly- or daily-based water quality forecasting.

연구소프트웨어의 공유, 재사용 및 인용과 관련된 현재 관행의 의미 (The Implications of Current Practices Relating to the Sharing, Reuse, and Citation of Research Software for the Future of Research)

  • 박형주
    • 정보관리학회지
    • /
    • 제38권4호
    • /
    • pp.65-82
    • /
    • 2021
  • 이 연구의 목적은 연구소프트웨어의 공유, 재사용, 인용 현황을 분석하는 것이다. 학술커뮤니케이션에서 연구소프트웨어는 최근 들어 더욱 중요한 역할을 하고 있다. 현재 연구소프트웨어의 인용이 일반적인 관행이 아니거나, 적어도 데이터인용색인(DCI)이 연구소프트웨어의 인용과 재사용을 제대로 인덱싱하지 못하는 것으로 관찰되었다. 소프트웨어인용은 주요 레포지토리(prominent repositories)에서 발견되었다. 소프트웨어인용이 많은 레포지토리는 CRAN(Comprehensive R Archive Network)과 Zenodo였다. 연구소프트웨어가 재사용되는 경우, 비공식 소프트웨어인용(informal software citation)과 공식 소프트웨어인용(formal software citation)이 동시에 관찰되었다. 비공식 소프트웨어인용은 연구소프트웨어가 논문의 본문에서는 언급되지만 참고문헌에는 없는 경우였고, 공식 소프트웨어인용은 참고문헌에도 있는 경우였다. 또한, 이 연구의 결과는 연구소프트웨어의 자기 인용(self-citation) 현황을 설명했다.

CNN 잡음감쇠기에서 필터 수의 최적화 (Optimization of the Number of Filter in CNN Noise Attenuator)

  • 이행우
    • 한국전자통신학회논문지
    • /
    • 제16권4호
    • /
    • pp.625-632
    • /
    • 2021
  • 본 논문은 잡음감쇠기에서 CNN(Convolutional Neural Network) 계층의 필터 수가 성능에 미치는 영향을 연구하였다 이 시스템은 적응필터 대신 신경망 예측필터를 이용하며 심층학습방법으로 잡음을 감쇠한다. 64-뉴런, 16-커널 CNN 필터와 오차 역전파 알고리즘을 이용하여 잡음이 포함된 음성신호로부터 음성을 추정한다. 본 연구에서 필터 수에 대한 잡음감쇠기의 성능을 검증하기 위하여 Keras 라이브러리를 사용한 프로그램을 작성하고 시뮬레이션을 실시하였다. 시뮬레이션 결과, 본 시스템은 필터 수가 16일 때 MSE(Mean Squared Error) 및 MAE(Mean Absolute Error) 값이 가장 작은 것으로 나타났으며 필터가 4개 일 때 성능이 가장 낮은 것을 볼 수 있다. 그리고 필터가 8개 이상이 되면 필터 수에 따라 MSE 및 MAE 값이 크게 차이나지 않는 것을 보여주었다. 이러한 결과로부터 음성신호의 주요 특징을 표현하기 위해서는 약 8개 이상의 필터를 사용해야 한다는 것을 알 수 있다.

Spatio-temporal potential future drought prediction using machine learning for time series data forecast in Abomey-calavi (South of Benin)

  • Agossou, Amos;Kim, Do Yeon;Yang, Jeong-Seok
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2021년도 학술발표회
    • /
    • pp.268-268
    • /
    • 2021
  • Groundwater resource is mostly used in Abomey-calavi (southern region of Benin) as main source of water for domestic, industrial, and agricultural activities. Groundwater intake across the region is not perfectly controlled by a network due to the presence of many private boreholes and traditional wells used by the population. After some decades, this important resource is becoming more and more vulnerable and needs more attention. For a better groundwater management in the region of Abomey-calavi, the present study attempts to predict a future probable groundwater drought using Recurrent Neural Network (RNN) for future groundwater level prediction. The RNN model was created in python using jupyter library. Six years monthly groundwater level data was used for the model calibration, two years data for the model test and the model was finaly used to predict two years future groundwater level (years 2020 and 2021). GRI was calculated for 9 wells across the area from 2012 to 2021. The GRI value in dry season (by the end of March) showed groundwater drought for the first time during the study period in 2014 as severe and moderate; from 2015 to 2021 it shows only moderate drought. The rainy season in years 2020 and 2021 is relatively wet and near normal. GRI showed no drought in rainy season during the study period but an important diminution of groundwater level between 2012 and 2021. The Pearson's correlation coefficient calculated between GRI and rainfall from 2005 to 2020 (using only three wells with times series long period data) proved that the groundwater drought mostly observed in dry season is not mainly caused by rainfall scarcity (correlation values between -0.113 and -0.083), but this could be the consequence of an overexploitation of the resource which caused the important spatial and temporal diminution observed from 2012 to 2021.

  • PDF

Digital Tools for Optimizing the Educational Process of a Modern University under Quarantine Restrictions

  • Nadiia A. Bachynska;Oksana Z. Klymenko;Tetiana V. Novalska;Halyna V. Salata;Vladyslav V. Kasian;Maryna M. Tsilyna
    • International Journal of Computer Science & Network Security
    • /
    • 제24권1호
    • /
    • pp.133-139
    • /
    • 2024
  • The educational situation, which resulted from the announced self-isolation regime, intensified the forced decisions on the organization of the distance educational process. The study is topical because of the provision of distance learning based on the experience of Kyiv National University of Culture and Arts. The study was conducted in three stages. Systemic, socio-communicative, competence approaches, sociological methods (questionnaires and interviews) were chosen as methodological tools of the research. The results of a survey of teachers and entrants to higher education institutions on the topic "Using social networks and digital platforms for online classes under the conditions of quarantine restrictions" allowed to scientifically substantiate the need for deeper knowledge of such tools as Google Meet (79%), Zoom (13.78%) and Google Classroom (11.62%), which are preferred by entrants. Almost a third of entrants (34.26%) noted the lack of scientific and methodological support for learning the subjects. The study showed high efficiency of messengers in distance education. The study found that in the process of organizing communication in the student-teacher system, it is necessary to take into account the priority of Telegram on the basis of which it is necessary to implement a chatbot for convenient and effective exchange of information about the educational process. Further research should focus on the effectiveness of the use of Telegram. The effectiveness of using chatbots should also be considered. Chatbots can be used to automate routine components of the learning process.

Patent Technology Trends of Oral Health: Application of Text Mining

  • Hee-Kyeong Bak;Yong-Hwan Kim;Han-Na Kim
    • 치위생과학회지
    • /
    • 제24권1호
    • /
    • pp.9-21
    • /
    • 2024
  • Background: The purpose of this study was to utilize text network analysis and topic modeling to identify interconnected relationships among keywords present in patent information related to oral health, and subsequently extract latent topics and visualize them. By examining key keywords and specific subjects, this study sought to comprehend the technological trends in oral health-related innovations. Furthermore, it aims to serve as foundational material, suggesting directions for technological advancement in dentistry and dental hygiene. Methods: The data utilized in this study consisted of information registered over a 20-year period until July 31st, 2023, obtained from the patent information retrieval service, KIPRIS. A total of 6,865 patent titles related to keywords, such as "dentistry," "teeth," and "oral health," were collected through the searches. The research tools included a custom-designed program coded specifically for the research objectives based on Python 3.10. This program was used for keyword frequency analysis, semantic network analysis, and implementation of Latent Dirichlet Allocation for topic modeling. Results: Upon analyzing the centrality of connections among the top 50 frequently occurring words, "method," "tooth," and "manufacturing" displayed the highest centrality, while "active ingredient" had the lowest. Regarding topic modeling outcomes, the "implant" topic constituted the largest share at 22.0%, while topics concerning "devices and materials for oral health" and "toothbrushes and oral care" exhibited the lowest proportions at 5.5% each. Conclusion: Technologies concerning methods and implants are continually being researched in patents related to oral health, while there is comparatively less technological development in devices and materials for oral health. This study is expected to be a valuable resource for uncovering potential themes from a large volume of patent titles and suggesting research directions.

60 GHz 무선 LAN의 응용을 위한 고이득 저잡음 증폭기에 관한 연구 (Studies on the High-gain Low Noise Amplifier for 60 GHz Wireless Local Area Network)

  • 조창식;안단;이성대;백태종;진진만;최석규;김삼동;이진구
    • 대한전자공학회논문지SD
    • /
    • 제41권11호
    • /
    • pp.21-27
    • /
    • 2004
  • 본 논문에서는 60 GHz 무선 LAN(wireless local area network) 응용을 위해 0.1 ㎛ Γ-gate pseudomorphic high electron mobility transistor(PHEMT)를 이용하여 V-band용 millimeter-wave monolithic integrated circuit(MIMIC) 저잡음 증폭기를 설계 및 제작하였다. 본 연구에서 개발한 PHEMT의 DC 특성으로 드레인 포화 전류 밀도(Idss)는 450 mA/mm, 최대 전달컨덕턴스(gm, max)는 363.6 mS/mm를 얻었으며, RF 특성으로 전류이득 차단주파수(fT)는 113 GHz, 최대 공진 주파수(fmax)는 180 GHz의 성능을 나타내었다. V-band MIMIC 저잡음 증폭기의 개발을 위해 PHEMT의 비선형 모델과 CPW 라이브러리를 구축하였으며, 이를 이용하여 V-band MIMIC 저잡음 증폭기를 설계하였다. 설계된 V-band MIMIC 저잡음 증폭기는 본 연구에서 개발된 PHEMT 기반의 MIMIC 공정을 이용해 제작되었으며, V-band MIMIC 저잡음 증폭기의 측정결과, 60 GHz에서 S21이득은 21.3 dB, 입력반사계수는 -10.6 dB 그리고 62.5 GHz에서 출력반사계수는 -29.7 dB의 특성을 나타내었다. V-band MIMIC 저잡음 증폭기의 잡음지수 측정결과, 60 GHz에서 4.23 dB의 특성을 나타내었다.

딥뉴럴네트워크 기반의 흡연 탐지기법 설계 (Design of detection method for smoking based on Deep Neural Network)

  • 이상현;윤현수;권현
    • 융합보안논문지
    • /
    • 제21권1호
    • /
    • pp.191-200
    • /
    • 2021
  • 컴퓨팅 기술의 발전과 데이터를 저장할 수 있는 클라우드 환경, 그리고 스마트폰의 보급으로 인하여 많은 데이터가 생산되는 환경에서 인공지능 기술이 발전되고 있다. 이러한 인공지능 기술 중에서 딥뉴럴네트워크는 이미지 인식, 이미지 분류 등에서 탁월한 성능을 제공하고 있다. 기존에는 이러한 딥뉴럴네트워크를 이용하여 산불 및 화재 예방을 위한 이미지 탐지에 대해 많은 연구가 있었지만 흡연 탐지에 대한 연구는 미흡한 실정이었다. 한편 군 부대에서는 각종 시설에 대한 감시체계를 CCTV를 통해 구축하고 있는데 화재, 폭발사고 예방을 위해 탄약고 주변에서의 흡연이나 금연구역에서의 흡연을 CCTV로 탐지하는 것이 필요한 상황이다. 본 논문에서는 딥뉴럴네트워크를 이용하여 흡연 여부를 탐지하는 방법에 대한 성능 분석을 하였으며 활성화함수, 학습률 등 실험적으로 최적화된 수치를 반영하여 흡연사진과 비흡연사진을 두 가지 경우로 탐지하는 것을 하였다. 실험 데이터로는 인터넷 상에 공개되어 있는 흡연 및 비흡연 사진을 크롤링하여 데이터를 구축하였으며, 실험은 머신러닝 라이브러리를 이용하였다. 실험결과로 학습률 0.004로 최적화 알고리즘 Adam을 사용하였을 때, 93%의 accuracy와 92%의 F1-score를 갖는 것을 볼 수 있었다. 또한 이로써 이미지의 연속인 CCTV 영상도 딥뉴럴네트워크를 이용하여 흡연 여부를 탐지할 수 있음을 알 수 있었다.

뉴럴네트워크 기반에 악성 URL 탐지방법 설계 (Design of detection method for malicious URL based on Deep Neural Network)

  • 권현;박상준;김용철
    • 융합정보논문지
    • /
    • 제11권5호
    • /
    • pp.30-37
    • /
    • 2021
  • 사물인터넷 등을 통하여 각종 기기들이 인터넷으로 연결되어 있고 이로 인하여 인터넷을 이용한 공격이 발생하고 있다. 그러한 공격 중 악성 URL를 이용하여 사용자에게 잘못된 피싱 사이트로 접속하게 하거나 악성 바이러스를 유포하는 공격들이 있다. 이러한 악성 URL 공격을 탐지하는 방법은 중요한 보안 이슈 중에 하나이다. 최근 딥러닝 기술 중 뉴럴네트워크는 이미지 인식, 음성 인식, 패턴 인식 등에 좋은 성능을 보여주고 있고 이러한 뉴럴네트워크를 이용하여 악성 URL 탐지하는 분야가 연구되고 있다. 본 논문에서는 뉴럴네트워크를 이용한 악성 URL 탐지 성능을 각 파라미터 및 구조에 따라서 성능을 분석하였다. 뉴럴네트워크의 활성화함수, 학습률, 뉴럴네트워크 모델 등 다양한 요소들에 따른 악성 URL 탐지 성능에 어떠한 영향을 미치는 지 분석하였다. 실험 데이터는 Alexa top 1 million과 Whois에서 크롤링하여 데이터를 구축하였고 머신러닝 라이브러리는 텐서플로우를 사용하였다. 실험결과로 층의 개수가 4개이고 학습률이 0.005이고 각 층마다 노드의 개수가 100개 일 때, 97.8%의 accuracy와 92.94%의 f1 score를 갖는 것을 볼 수 있었다.