• 제목/요약/키워드: LiDAR-based point clouds

검색결과 33건 처리시간 0.03초

Accuracy Comparison Between Image-based 3D Reconstruction Technique and Terrestrial LiDAR for As-built BIM of Outdoor Structures

  • Lee, Jisang;Hong, Seunghwan;Cho, Hanjin;Park, Ilsuk;Cho, Hyoungsig;Sohn, Hong-Gyoo
    • 한국측량학회지
    • /
    • 제33권6호
    • /
    • pp.557-567
    • /
    • 2015
  • With the increasing demands of 3D spatial information in urban environment, the importance of point clouds generation techniques have been increased. In particular, for as-built BIM, the point clouds with the high accuracy and density is required to describe the detail information of building components. Since the terrestrial LiDAR has high performance in terms of accuracy and point density, it has been widely used for as-built 3D modelling. However, the high cost of devices is obstacle for general uses, and the image-based 3D reconstruction technique is being a new attraction as an alternative solution. This paper compares the image-based 3D reconstruction technique and the terrestrial LiDAR in point of establishing the as-built BIM of outdoor structures. The point clouds generated from the image-based 3D reconstruction technique could roughly present the 3D shape of a building, but could not precisely express detail information, such as windows, doors and a roof of building. There were 13.2~28.9 cm of RMSE between the terrestrial LiDAR scanning data and the point clouds, which generated from smartphone and DSLR camera images. In conclusion, the results demonstrate that the image-based 3D reconstruction can be used in drawing building footprint and wireframe, and the terrestrial LiDAR is suitable for detail 3D outdoor modeling.

LiDAR Measurement Analysis in Range Domain

  • Sooyong Lee
    • 센서학회지
    • /
    • 제33권4호
    • /
    • pp.187-195
    • /
    • 2024
  • Light detection and ranging (LiDAR), a widely used sensor in mobile robots and autonomous vehicles, has its most important function as measuring the range of objects in three-dimensional space and generating point clouds. These point clouds consist of the coordinates of each reflection point and can be used for various tasks, such as obstacle detection and environment recognition. However, several processing steps are required, such as three-dimensional modeling, mesh generation, and rendering. Efficient data processing is crucial because LiDAR provides a large number of real-time measurements with high sampling frequencies. Despite the rapid development of controller computational power, simplifying the computational algorithm is still necessary. This paper presents a method for estimating the presence of curbs, humps, and ground tilt using range measurements from a single horizontal or vertical scan instead of point clouds. These features can be obtained by data segmentation based on linearization. The effectiveness of the proposed algorithm was verified by experiments in various environments.

지상 라이다를 활용한 트렌치 단층 단면 3차원 영상 생성과 웹 기반 대용량 점군 자료 가시화 플랫폼 활용 사례 (Application of Terrestrial LiDAR for Reconstructing 3D Images of Fault Trench Sites and Web-based Visualization Platform for Large Point Clouds)

  • 이병우;김승섭
    • 자원환경지질
    • /
    • 제54권2호
    • /
    • pp.177-186
    • /
    • 2021
  • 한반도 지진 재해 대비를 위해 지난 5년간 활성 단층 조사가 수행되어 왔다. 특히 피복 활성단층 조사는 항공 LiDAR 기반 지형 분석, 지표 지질 조사, 지구 물리 탐사 결과를 종합하여 피복된 단층면에 대한 트렌치 조사를 수반한다. 하지만 이러한 트렌치 조사에 의해 발견된 단층면은 한시적으로 연구된 후 복구되기 때문에 트렌치 단층면 현장에 대한 정보는 논문 및 보고서 등과 같은 정성 자료로 남게 된다. 이와 같은 한시적 지질 연구의 한계를 보완하기 위하여 이 연구에서는 지상 LiDAR를 활용하여 트렌치 단층면에 대한 3차원 점군 자료를 생성하고 디지털 공간상에서 트렌치 현장을 복원하였다. 지상 LiDAR 탐사는 양산 단층 지역에서 수행된 두 곳의 트렌치 조사 지점에서 수행되었으며, LiDAR 점군의 기본 속성값인 진폭과 반사도 이외에도 디지털 카메라를 활용하여 트렌치 단층면의 색상 정보도 측정하였다. 측정된 자료는 평균 0.003 m의 정합 오차를 가지는 3차원 점군 자료로 변환되어 트렌치 형상을 정교하게 복원하였다. 하지만 LiDAR 스캔 위치에 따라 점군의 진폭과 반사도 값이 변화되었으며, 햇빛 노출 정도에 따라서 트렌치 단면의 색상 정보가 다르게 형상화 되어 후처리 과정의 고도화가 필요함을 시사하였다. 이러한 점군 자료는 대용량 파일로 존재하고 점군 자료 가시화 방법 또한 제한적이기 때문에 3차원 점군 자료에 대한 연구자 간 공유가 어렵다. 이에 대한 대안으로 오픈소스 플랫폼인 Potree를 활용하여 트렌치 점군 자료를 웹 상에서 가시화하는 방법을 제안하였다. 이와 같이 우리는 시간적 그리고 공간적 제약 조건이 따르는 지질 현장 조사에서 지상 LiDAR 자료가 주요 지질 대상에 대한 재현성을 높일 수 있는 동시에 연구자 및 미래 후속 세대에 의해 손쉽게 활용될 수 있음을 보여주고자 한다.

천장지향 2D-LiDAR 회전 모듈을 이용한 실내 주행 로봇의 천장 기반 위치 추정 (Ceiling-Based Localization of Indoor Robots Using Ceiling-Looking 2D-LiDAR Rotation Module)

  • 안재원;고윤호
    • 한국멀티미디어학회논문지
    • /
    • 제22권7호
    • /
    • pp.780-789
    • /
    • 2019
  • In this paper, we propose a new indoor localization method for indoor mobile robots using LiDAR. The indoor mobile robots operating in limited areas usually require high-precision localization to provide high level services. The performance of the widely used localization methods based on radio waves or computer vision are highly dependent on their usage environment. Therefore, the reproducibility of the localization is insufficient to provide high level services. To overcome this problem, we propose a new localization method based on the comparison between ceiling shape information obtained from LiDAR measurement and the blueprint. Specifically, the method includes a reliable segmentation method to classify point clouds into connected planes, an effective comparison method to estimate position by matching 3D point clouds and 2D blueprint information. Since the ceiling shape information is rarely changed, the proposed localization method is robust to its usage environment. Simulation results prove that the position error of the proposed localization method is less than 10 cm.

하천 제방의 영상 점군에서 식생 점 제거 필터링 기법 비교 분석 (Comparative Analysis of Filtering Techniques for Vegetation Points Removal from Photogrammetric Point Clouds at the Stream Levee)

  • 박희성;이두한
    • Ecology and Resilient Infrastructure
    • /
    • 제8권4호
    • /
    • pp.233-244
    • /
    • 2021
  • 본 연구에서는 식생이 무성한 제방의 이상유무 점검을 위한 지상 LiDAR(Light Detection And Ranging) 측량의 적용성을 검토하였다. 지상 LiDAR 측량으로 생성된 제방의 영상 점군 자료에 색상필터 및 형태필터를 적용하여 각 기법별 정확성과 특성을 평가하였다. 임진강 제방의 영상 점군 자료를 이용하여 CIVE, ExG, ExGR, ExR, MExG, NGRDI, VEG, VVI, ATIN, ISL 등의 10가 식생 제거 필터를 적용하였다. 결과에 의하면 정확성은 ISL, ATIN, ExR, NGRDI, ExGR, ExG, MExG, VVI, VEG, CIVE 등의 순서로 나타났다. 색상필터는 지반 구분에 한계를 보였으며 풀꽃을 지반으로 구분하기도 했다. 형태필터는 지반 구분 정확도가 우수하나 거석을 식생으로 인식하는 한계도 보였다. 전체적으로 형태필터가 우수하나 계산 시간에서 10 배 정도 소요되었다. 정확도와 속도 향상을 위해서 형태필터와 색상필터를 결합한 복합필터에 대한 연구가 필요하다.

Long-term shape sensing of bridge girders using automated ROI extraction of LiDAR point clouds

  • Ganesh Kolappan Geetha;Sahyeon Lee;Junhwa Lee;Sung-Han Sim
    • Smart Structures and Systems
    • /
    • 제33권6호
    • /
    • pp.399-414
    • /
    • 2024
  • This study discusses the long-term deformation monitoring and shape sensing of bridge girder surfaces with an automated extraction scheme for point clouds in the Region Of Interest (ROI), invariant to the position of a Light Detection And Ranging system (LiDAR). Advanced smart construction necessitates continuous monitoring of the deformation and shape of bridge girders during the construction phase. An automated scheme is proposed for reconstructing geometric model of ROI in the presence of noisy non-stationary background. The proposed scheme involves (i) denoising irrelevant background point clouds using dimensions from the design model, (ii) extracting the outer boundaries of the bridge girder by transforming and processing the point cloud data in a two-dimensional image space, (iii) extracting topology of pre-defined targets using the modified Otsu method, (iv) registering the point clouds to a common reference frame or design coordinate using extracted predefined targets placed outside ROI, and (v) defining the bounding box in the point clouds using corresponding dimensional information of the bridge girder and abutments from the design model. The surface-fitted reconstructed geometric model in the ROI is superposed consistently over a long period to monitor bridge shape and derive deflection during the construction phase, which is highly correlated. The proposed scheme of combining 2D-3D with the design model overcomes the sensitivity of 3D point cloud registration to initial match, which often leads to a local extremum.

가우시안 혼합모델 기반 3차원 차량 모델을 이용한 복잡한 도시환경에서의 정확한 주차 차량 검출 방법 (Accurate Parked Vehicle Detection using GMM-based 3D Vehicle Model in Complex Urban Environments)

  • 조영근;노현철;정명진
    • 로봇학회논문지
    • /
    • 제10권1호
    • /
    • pp.33-41
    • /
    • 2015
  • Recent developments in robotics and intelligent vehicle area, bring interests of people in an autonomous driving ability and advanced driving assistance system. Especially fully automatic parking ability is one of the key issues of intelligent vehicles, and accurate parked vehicles detection is essential for this issue. In previous researches, many types of sensors are used for detecting vehicles, 2D LiDAR is popular since it offers accurate range information without preprocessing. The L shape feature is most popular 2D feature for vehicle detection, however it has an ambiguity on different objects such as building, bushes and this occurs misdetection problem. Therefore we propose the accurate vehicle detection method by using a 3D complete vehicle model in 3D point clouds acquired from front inclined 2D LiDAR. The proposed method is decomposed into two steps: vehicle candidate extraction, vehicle detection. By combination of L shape feature and point clouds segmentation, we extract the objects which are highly related to vehicles and apply 3D model to detect vehicles accurately. The method guarantees high detection performance and gives plentiful information for autonomous parking. To evaluate the method, we use various parking situation in complex urban scene data. Experimental results shows the qualitative and quantitative performance efficiently.

Point-based Method 를 사용한 포인트 클라우드 연구 동향 (A Survey on Point Cloud Research Paradigm Using Point - based Method)

  • 한정우;김종국
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2021년도 추계학술발표대회
    • /
    • pp.783-786
    • /
    • 2021
  • In recent years, the use of LiDAR sensors is increasing as autonomous driving, robot control, and drones are considered more. Contrary to ordinary cameras, LiDAR sensors make it possible to handle challenging problems by calculating the distance between objects. This crucial characteristic makes more active research on deep learning models dealing with point clouds which are data of LiDAR. In this paper, among the schemes of using the point cloud, the Point-based approach is mainly discussed. Furthermore, future streams and insights can be considered by looking at solving methods and the limitations.

A Comparative Analysis of Point Clouds Acquired from Terrestrial Laser Scanning, UAV Photogrammetry, UAV-based LiDAR, and 3D Virtual Tours in the Built Environment

  • Shadi ALATHAMNEH;Busra YUCEL;Junshan LIU;Scott KRAMER
    • 국제학술발표논문집
    • /
    • The 10th International Conference on Construction Engineering and Project Management
    • /
    • pp.277-284
    • /
    • 2024
  • The improvement of the reality capture concept has made 3D datasets an important resource for visualization and documentation in the Architectural, Engineering, and Construction (AEC) field. Despite laser scanning providing the most accurate 3D models, it also entails some disadvantages, such as high equipment costs. Therefore, this study aims to compare the accuracy of four reality capture equipment types (LiDAR, UAV-based LiDAR, UAV-based photogrammetry, and 3D virtual tours), each offering different advantages and disadvantages. The findings suggest that aerial LiDAR, 3D virtual tour, and aerial photogrammetry offer increasingly less accurate alternatives to TLS, respectively. The results of the study may help construction companies when deciding on reality capture investment.

복층 건물 실내외 역설계를 위한 UAV 및 LiDAR SLAM 조합 효용성 검토 (UAV and LiDAR SLAM Combination Effectiveness Review for Indoor and Outdoor Reverse Engineering of Multi-Story Building)

  • 강준오;이용창
    • 지적과 국토정보
    • /
    • 제50권2호
    • /
    • pp.69-79
    • /
    • 2020
  • 최근 IoT 기술을 기반으로 도시의 여러 문제점을 정보화하여 해결하는 스마트 시티가 각광받고 있다. 특히, 시공 및 유지보수의 원활한 관리를 위한 BIM 적용 사례가 증가하며 융합기술을 통해 공간정보를 3D 데이터화하여 안전진단에 활용하고 있다. 본 연구의 목적은 UAV 및 LiDAR 장비 중 지상 레이저 스캐너와 핸드헬드 LiDAR SLAM을 활용하여 복층 건물의 포인트 클라우드를 생성 및 조합, 각 기술의 폐색영역 및 단점을 보완하고 형상재현 및 정확도를 관측하여 실내외 역설계의 효용성을 검토하는 것이다. 검토결과, 3가지 기술을 사용하여 복층 건물의 실내외 포인트 클라우드를 생성·조합하여 데이터의 좌표 정확도가 향상됨을 확인하였다. 특히, 각 기술의 단점을 보완, 건물의 형상재현 완성도를 높이고 폐색영역 및 경계면 구분이 명확하게 나타나며 역설계의 효용성을 입증하였다.