• Title/Summary/Keyword: LiDAR system

Search Result 275, Processing Time 0.023 seconds

Development of GIS Based Wetland Inventory and Its Use (GIS에 기반한 습지목록의 제작과 활용)

  • Yi, Gi-Chul;Lee, Jae-Won;Kim, Yong-Suk
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.13 no.1
    • /
    • pp.50-61
    • /
    • 2010
  • This study was carried out to find out the way to build a comprehensive wetland ecosystem database using the technique of remote sensing and Geographic Information System. A Landsat TM image (taken in Oct. 30, 2002), Kompsat-2 images (Jan. 17, 2008 & Nov. 20, 2008), LiDAR(Mar. 1, 2009) were used for the primary source for the image analysis. Field surveys were conducted March to August of 2009 to help image analysis and examine the results. An actual wetland vegetation map was created based on the field survey. Satellite images were analyzed by unsupervised and supervised classification methods and finally categorized into such classes as Phragmites australis community, mixed community, sand beach, Scirpus planiculmis community and non-vegetation intertidal area. The map of wetland productivity was developed based on the productivity of Phragmites australis and the relationship to the proximity of adjacent water bodies. The developed 3 dimensional wetland map showed such several potential applications as flood inundation, birds flyway viewsheds and benthos distribution. Considering these results, we concluded that it is possible to use the remote sensing and GIS techniques for producing wetland ecosystem spatial database and these techniques are very effective for the development of the national wetland inventory in Korea.

Review of Remote Sensing Technology for Forest Canopy Height Estimation and Suggestions for the Advancement of Korea's Nationwide Canopy Height Map (원격탐사기반 임분고 추정 모델 개발 국내외 현황 고찰 및 제언)

  • Lee, Boknam;Jung, Geonhwi;Ryu, Jiyeon;Kwon, Gyeongwon;Yim, Jong Su;Park, Joowon
    • Journal of Korean Society of Forest Science
    • /
    • v.111 no.3
    • /
    • pp.435-449
    • /
    • 2022
  • Forest canopy height is an indispensable vertical structure parameter that can be used for understanding forest biomass and carbon storage as well as for managing a sustainable forest ecosystem. Plot-based field surveys, such as the national forest inventory, have been conducted to provide estimates of the forest canopy height. However, the comprehensive nationwide field monitoring of forest canopy height has been limited by its cost, lack of spatial coverage, and the inaccessibility of some forested areas. These issues can be addressed by remote sensing technology, which has gained popularity as a means to obtain detailed 2- and 3-dimensional measurements of the structure of the canopy at multiple scales. Here, we reviewed both international and domestic studies that have used remote sensing technology approaches to estimate the forest canopy height. We categorized and examined previous approaches as: 1) LiDAR approach, 2) Stereo or SAR image-based point clouds approach, and 3) combination approach of remote sensing data. We also reviewed upscaling approaches of utilizing remote sensing data to generate a continuous map of canopy height across large areas. Finally, we provided suggestions for further advancement of the Korean forest canopy height estimation system through the use of various remote sensing technologies.

Building Dataset of Sensor-only Facilities for Autonomous Cooperative Driving

  • Hyung Lee;Chulwoo Park;Handong Lee;Junhyuk Lee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.1
    • /
    • pp.21-30
    • /
    • 2024
  • In this paper, we propose a method to build a sample dataset of the features of eight sensor-only facilities built as infrastructure for autonomous cooperative driving. The feature extracted from point cloud data acquired by LiDAR and build them into the sample dataset for recognizing the facilities. In order to build the dataset, eight sensor-only facilities with high-brightness reflector sheets and a sensor acquisition system were developed. To extract the features of facilities located within a certain measurement distance from the acquired point cloud data, a cylindrical projection method was applied to the extracted points after applying DBSCAN method for points and then a modified OTSU method for reflected intensity. Coordinates of 3D points, projected coordinates of 2D, and reflection intensity were set as the features of the facility, and the dataset was built along with labels. In order to check the effectiveness of the facility dataset built based on LiDAR data, a common CNN model was selected and tested after training, showing an accuracy of about 90% or more, confirming the possibility of facility recognition. Through continuous experiments, we will improve the feature extraction algorithm for building the proposed dataset and improve its performance, and develop a dedicated model for recognizing sensor-only facilities for autonomous cooperative driving.

Estimation Carbon Storage of Urban Street trees Using UAV Imagery and SfM Technique (UAV 영상과 SfM 기술을 이용한 가로수의 탄소저장량 추정)

  • Kim, Da-Seul;Lee, Dong-Kun;Heo, Han-Kyul
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.22 no.6
    • /
    • pp.1-14
    • /
    • 2019
  • Carbon storage is one of the regulating ecosystem services provided by urban street trees. It is important that evaluating the economic value of ecosystem services accurately. The carbon storage of street trees was calculated by measuring the morphological parameter on the field. As the method is labor-intensive and time-consuming for the macro-scale research, remote sensing has been more widely used. The airborne Light Detection And Ranging (LiDAR) is used in obtaining the point clouds data of a densely planted area and extracting individual trees for the carbon storage estimation. However, the LiDAR has limitations such as high cost and complicated operations. In addition, trees change over time they need to be frequently. Therefore, Structure from Motion (SfM) photogrammetry with unmanned Aerial Vehicle (UAV) is a more suitable method for obtaining point clouds data. In this paper, a UAV loaded with a digital camera was employed to take oblique aerial images for generating point cloud of street trees. We extracted the diameter of breast height (DBH) from generated point cloud data to calculate the carbon storage. We compared DBH calculated from UAV data and measured data from the field in the selected area. The calculated DBH was used to estimate the carbon storage of street trees in the study area using a regression model. The results demonstrate the feasibility and effectiveness of applying UAV imagery and SfM technique to the carbon storage estimation of street trees. The technique can contribute to efficiently building inventories of the carbon storage of street trees in urban areas.

Monitoring Management Plan for Changed Region with respect to Revision Periods (변화지역에 대한 갱신주기별 모니터링 운영방안)

  • Han, You Kyung;Yeom, Jun Ho;Kim, Yong Il;Lee, Byoung Kil
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.31 no.5
    • /
    • pp.401-410
    • /
    • 2013
  • Due to the increasing need for spatial information, there have been a lot of research related with monitoring and revision of changed regions for the acquisition of the accurate and latest information. In this paper, the optimal monitoring management plan for changed regions with respect to the revision periods was proposed. For this purpose, the representative monitoring methods, which are based on database, professional manpower and crowdsourcing of continuous revision, and aerial imagery, satellite imagery and LiDAR of cyclic revision, were investigated. Then, the properties and application status of monitoring systems in Korea were illustrated according to the methods. Finally, the optimal monitoring management plan for continuous and cyclic revisions was suggested through the comparison of properties and revisionable objects of each method. From the result, it was shown to be appropriate for the optimal monitoring management plan of continuous revision as using Internet-Architectural Information System (e-AIS) database cooperated with professional manpower and crowdsourcing, and cyclic revision as using domestic high-resolution satellite images and LiDAR data processed semi-automatically.

Time-critical Disaster Response by Cooperating with International Charter (국제재난기구 협업을 통한 적시적 재난대응)

  • Kim, Seong-Sam;Goo, Sin-Hoi;Park, Young-Jin
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.20 no.2
    • /
    • pp.109-117
    • /
    • 2012
  • Recently, large-scale multi-hazards have been occurred in the various areas of the world. A variety of Earth observation sensors such as satellite EO, aerial and terrestrial LiDAR have been utilized for global natural disaster monitoring. Especially, commercial satellites which observe the Earth regularly and repeatedly, and acquire images with cm-level high spatial resolution enable its applications to extend in the fields of disaster management from advanced disaster monitoring to timely recovery. However, due to existing satellite operation systems with some limitations in almost real-time and wide regional disaster response, close international collaborations between satellite operating organizations like NASA, JAXA, KARI etc. have been required for collecting satellite images in time through a satellite platform with multi-sensors or satellite constellation. For responding domestic natural disaster such as heavy snowfall and extreme rainfall in 2011, this paper proposes a disaster management system for timely decision-making; rapid acquisition of satellite imagery, data processing, GIS analysis, and digital mapping through cooperation with NDMI in Korea and International Charter-Space and Major disasters.

Method to Improve Localization and Mapping Accuracy on the Urban Road Using GPS, Monocular Camera and HD Map (GPS와 단안카메라, HD Map을 이용한 도심 도로상에서의 위치측정 및 맵핑 정확도 향상 방안)

  • Kim, Young-Hun;Kim, Jae-Myeong;Kim, Gi-Chang;Choi, Yun-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_1
    • /
    • pp.1095-1109
    • /
    • 2021
  • The technology used to recognize the location and surroundings of autonomous vehicles is called SLAM. SLAM standsfor Simultaneously Localization and Mapping and hasrecently been actively utilized in research on autonomous vehicles,starting with robotic research. Expensive GPS, INS, LiDAR, RADAR, and Wheel Odometry allow precise magnetic positioning and mapping in centimeters. However, if it can secure similar accuracy as using cheaper Cameras and GPS data, it will contribute to advancing the era of autonomous driving. In this paper, we present a method for converging monocular camera with RTK-enabled GPS data to perform RMSE 33.7 cm localization and mapping on the urban road.

Realtime Video Visualization based on 3D GIS (3차원 GIS 기반 실시간 비디오 시각화 기술)

  • Yoon, Chang-Rak;Kim, Hak-Cheol;Kim, Kyung-Ok;Hwang, Chi-Jung
    • Journal of Korea Spatial Information System Society
    • /
    • v.11 no.1
    • /
    • pp.63-70
    • /
    • 2009
  • 3D GIS(Geographic Information System) processes, analyzes and presents various real-world 3D phenomena by building 3D spatial information of real-world terrain, facilities, etc., and working with visualization technique such as VR(Virtual Reality). It can be applied to such areas as urban management system, traffic information system, environment management system, disaster management system, ocean management system, etc,. In this paper, we propose video visualization technology based on 3D geographic information to provide effectively real-time information in 3D geographic information system and also present methods for establishing 3D building information data. The proposed video visualization system can provide real-time video information based on 3D geographic information by projecting real-time video stream from network video camera onto 3D geographic objects and applying texture-mapping of video frames onto terrain, facilities, etc.. In this paper, we developed sem i-automatic DBM(Digital Building Model) building technique using both aerial im age and LiDAR data for 3D Projective Texture Mapping. 3D geographic information system currently provide static visualization information and the proposed method can replace previous static visualization information with real video information. The proposed method can be used in location-based decision-making system by providing real-time visualization information, and moreover, it can be used to provide intelligent context-aware service based on geographic information.

  • PDF

LiDAR based Real-time Ground Segmentation Algorithm for Autonomous Driving (자율주행을 위한 라이다 기반의 실시간 그라운드 세그멘테이션 알고리즘)

  • Lee, Ayoung;Yi, Kyongsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.14 no.2
    • /
    • pp.51-56
    • /
    • 2022
  • This paper presents an Ground Segmentation algorithm to eliminate unnecessary Lidar Point Cloud Data (PCD) in an autonomous driving system. We consider Random Sample Consensus (Ransac) Algorithm to process lidar ground data. Ransac designates inlier and outlier to erase ground point cloud and classified PCD into two parts. Test results show removal of PCD from ground area by distinguishing inlier and outlier. The paper validates ground rejection algorithm in real time calculating the number of objects recognized by ground data compared to lidar raw data and ground segmented data based on the z-axis. Ground Segmentation is simulated by Robot Operating System (ROS) and an analysis of autonomous driving data is constructed by Matlab. The proposed algorithm can enhance performance of autonomous driving as misrecognizing circumstances are reduced.

Strategy for V2E Performance Assurance Technology Development Using the Kano Model (Kano 모델을 활용한 V2E 성능확보기술 개발 전략)

  • Jang, Jeong Ah;Son, Sungho;Lee, Jung Ki
    • Journal of Auto-vehicle Safety Association
    • /
    • v.14 no.2
    • /
    • pp.75-82
    • /
    • 2022
  • Automated vehicles (AVs) are coming to our roadways. In practice, there are still several challenges that can impede the AV sensors are polluted on various road conditions. In this paper, we propose a strategy for V2E performance assurance technology using Kano model. We are developing the vehicle sensor cleaning system about the three types of commonly used sensors: camera, radar, and LiDAR. Surveys were carried out in 30 AV's experts on quality characteristics about V2E performance assurance technology. As a result, the Kano model developed to verify a major requirement of autonomous vehicle's sensor cleaning system. It is expected that the Kano model will be actively used to verify the importance of V2E development strategy.