• 제목/요약/키워드: LiDAR performance

검색결과 115건 처리시간 0.028초

A Study on the Effective Preprocessing Methods for Accelerating Point Cloud Registration

  • Chungsu, Jang;Yongmin, Kim;Taehyun, Kim;Sunyong, Choi;Jinwoo, Koh;Seungkeun, Lee
    • 대한원격탐사학회지
    • /
    • 제39권1호
    • /
    • pp.111-127
    • /
    • 2023
  • In visual slam and 3D data modeling, the Iterative Closest Point method is a primary fundamental algorithm, and many technical fields have used this method. However, it relies on search methods that take a high search time. This paper solves this problem by applying an effective point cloud refinement method. And this paper also accelerates the point cloud registration process with an indexing scheme using the spatial decomposition method. Through some experiments, the results of this paper show that the proposed point cloud refinement method helped to produce better performance.

제주 동복·북촌 풍력발전단지의 바람환경 특성분석 (Characteristics of Wind Environment in Dongbok·Bukchon Wind Farm on Jeju)

  • 정형세;김연희;최희욱
    • 신재생에너지
    • /
    • 제18권1호
    • /
    • pp.1-16
    • /
    • 2022
  • Climatic characteristics were described using the LiDAR (Light Detection and Ranging) and the met-mast on Dongbok·Bukchon region. The influences of meteorological conditions on the power performance of wind turbines were presented using the data of Supervisory Control And Data Acquisition (SCADA) and met-mast of the Dongbok·Bukchon Wind Farm (DBWF) located in Jeju Island. The stability was categorized into three parameters (Richardson number, Turbulence intensity, and Wind shear exponent). DBWF was dominant in unstable atmospheric conditions. At wind speeds of 14 m/s or more, the proportion of slightly unstable conditions accounted for more than 50%. A clear difference in the power output of the wind turbine was exhibited in the category of atmospheric stability and turbulence intensity (TI). Particularly, a more sensitive difference in power performance was showed in the rated wind speeds of the wind turbine and wind regime with high TI. When the flow had a high turbulence at low wind speeds and a low turbulence at rated wind speeds, a higher wind energy potential was produced than that in other conditions. Finally, the high-efficiency of the wind farm was confirmed in the slightly unstable atmospheric stability. However, when the unstable state become stronger, the wind farm efficiency was lower than that in the stable state.

거리 기반 적응형 임계값을 활용한 강건한 3차원 물체 탐지 (Robust 3D Object Detection through Distance based Adaptive Thresholding)

  • 이은호;정민우;김종호;이경수;김아영
    • 로봇학회논문지
    • /
    • 제19권1호
    • /
    • pp.106-116
    • /
    • 2024
  • Ensuring robust 3D object detection is a core challenge for autonomous driving systems operating in urban environments. To tackle this issue, various 3D representation, including point cloud, voxels, and pillars, have been widely adopted, making use of LiDAR, Camera, and Radar sensors. These representations improved 3D object detection performance, but real-world urban scenarios with unexpected situations can still lead to numerous false positives, posing a challenge for robust 3D models. This paper presents a post-processing algorithm that dynamically adjusts object detection thresholds based on the distance from the ego-vehicle. While conventional perception algorithms typically employ a single threshold in post-processing, 3D models perform well in detecting nearby objects but may exhibit suboptimal performance for distant ones. The proposed algorithm tackles this issue by employing adaptive thresholds based on the distance from the ego-vehicle, minimizing false negatives and reducing false positives in the 3D model. The results show performance enhancements in the 3D model across a range of scenarios, encompassing not only typical urban road conditions but also scenarios involving adverse weather conditions.

Moving Object Segmentation을 활용한 자동차 이동 방향 추정 성능 개선 (Moving Object Segmentation-based Approach for Improving Car Heading Angle Estimation)

  • 노치윤;정상우;김유진;이경수;김아영
    • 로봇학회논문지
    • /
    • 제19권1호
    • /
    • pp.130-138
    • /
    • 2024
  • High-precision 3D Object Detection is a crucial component within autonomous driving systems, with far-reaching implications for subsequent tasks like multi-object tracking and path planning. In this paper, we propose a novel approach designed to enhance the performance of 3D Object Detection, especially in heading angle estimation by employing a moving object segmentation technique. Our method starts with extracting point-wise moving labels via a process of moving object segmentation. Subsequently, these labels are integrated into the LiDAR Pointcloud data and integrated data is used as inputs for 3D Object Detection. We conducted an extensive evaluation of our approach using the KITTI-road dataset and achieved notably superior performance, particularly in terms of AOS, a pivotal metric for assessing the precision of 3D Object Detection. Our findings not only underscore the positive impact of our proposed method on the advancement of detection performance in lidar-based 3D Object Detection methods, but also suggest substantial potential in augmenting the overall perception task capabilities of autonomous driving systems.

임분 상하층의 바이오매스 조사를 위한 백팩형 라이다와 드론 라이다의 적용성 평가 (Backpack- and UAV-based Laser Scanning Application for Estimating Overstory and Understory Biomass of Forest Stands)

  • 이희재;김승욱;최혜영
    • 한국산림과학회지
    • /
    • 제112권3호
    • /
    • pp.363-373
    • /
    • 2023
  • 산림 바이오매스 조사는 탄소흡수원으로서의 산림을 평가하고 관리하기 위해 주기적으로 수행된다. 원격탐사의 한 종류인 라이다는 적은 노동력으로 객관적인 산림 구조 정보를 획득할 수 있어, 최근 라이다(LiDAR, Light Detection and Ranging)를 이용한 산림 조사가 주목받고 있다. 본 연구에서는 임분 상하층 바이오매스 추정에 백팩형 라이다(Backpack Laser Scanning, BPLS)와 드론 라이다(Unmanned Aerial Vehicle Laser Scanning, UAV-LS)를 이용하는 방법을 제시하고 그 정확도를 평가하였다. 상층의 경우 BPLS와 UAV-LS의 흉고직경과 수고 추정 정확도를 분석하였고, 하층의 경우 BPLS 데이터에서 추출한 수직구조 변수 중 최상의 변수 조합으로 하층 바이오매스를 추정하는 다중회귀모델을 개발하였다. 그 결과, BPLS는 흉고직경을 높은 정확도로 추정하였지만(R2 =0.92) 수고는 과소 추정하였다(R2 =0.63, Bias=-5.56 m). UAV-LS는 BPLS보다 더 높은 수고 추정 정확도를 보였다(R2 =0.91). 하층의 경우 점들의 평균 높이와 라이다 데이터를 같은 높이를 가진 10개의 층으로 나누었을 때 아래에서 네 번째 층의 점 밀도를 의미하는 변수가 선택되어 모델이 개발되었으며, 교차검증 결과 결정계수 값은 0.68로 나타났다. 본 연구의 결과는 BPLS와 UAV-LS를 이용한 임분의 상하층 바이오매스 조사 방법이 기존의 조사 방식을 효과적으로 대체할 수 있음을 시사한다.

무인 점포 사용자 이상행동을 탐지하기 위한 지능형 모션 패턴 인식 알고리즘 (Intelligent Motion Pattern Recognition Algorithm for Abnormal Behavior Detections in Unmanned Stores)

  • 최영준;나지영;안준호
    • 인터넷정보학회논문지
    • /
    • 제24권6호
    • /
    • pp.73-80
    • /
    • 2023
  • 최근 최저시급의 가파른 인상으로 인건비에 대한 부담이 늘어남과 함께 코로나19의 여파로 무인 상점의 점유율이 높아지고 있는 추세이다. 그로 인해 무인 점포를 타겟으로 하는 도난 범죄들도 같이 늘어나고 있어 이러한 도난 사고를 방지하기 위해 Just-Walk-Out 시스템을 도입하고 고비용의 LiDAR 센서, 가중치 센서 등을 사용하거나 수동으로 지속적인 CCTV 감시를 통해서 확인하고 있다. 하지만 이런 고가의 센서를 많이 사용할수록 점포 운영에 있어 비용 부담이 늘어나게 되고, CCTV 확인은 관리자가 24시간 내내 감시하기 어려워서 사용이 제한적이다. 본 연구에서는 이런 센서들이나 사람에 의지하는 부분을 해결할 수 있고 무인점포에서 사용할 수 있는 저비용으로 도난 등의 이상행동을 하는 고객을 탐지하여 클라우드 기반의 알림을 제공하는 인공지능 영상 처리 융합 알고리즘을 제안하고자 한다. 또한 본 연구에서는 mediapipe를 이용한 모션캡쳐, YOLO를 이용한 객체탐지 그리고 융합 알고리즘을 통해 무인 점포에서 수집한 행동 패턴 데이터를 바탕으로 각 알고리즘들에 대한 정확도를 확인하며 다양한 상황 실험을 통해 융합 알고리즘의 성능을 증명했다.

터널 막장 3차원 지형모델 상에서의 불연속면 자동 매핑을 위한 딥러닝 기법 적용 방안 (Deep Learning Approach for Automatic Discontinuity Mapping on 3D Model of Tunnel Face)

  • 추엔 팜;신휴성
    • 터널과지하공간
    • /
    • 제33권6호
    • /
    • pp.508-518
    • /
    • 2023
  • 이 논문은 LiDAR 스캔 또는 사진측량 기술에 의해 재구성된 3D 디지털 모델을 기반으로 터널 벽면의 불연속면을 자동으로 매핑하는 새로운 접근 방식을 제안한다. 본 제안에서는 U-Net이라 불리는 딥러닝 시맨틱 영역분할 모델을 사용하며, 터널 막장면의 3D 지형 모델에서 불연속면 영역을 식별해 낸다. 제안된 딥러닝 모델은 투영된 RGB 이미지, 면의 깊이 이미지 및 국부적인 면의 표면 속성 이미지(즉, 법선 벡터 및 곡률 이미지)를 포함한 다양한 정보를 종합 학습하여 기본 3차원 이미지에서 불연속면 영역을 효과적으로 분할한다. 이후 영역분할 결과는 면의 깊이 맵과 투영 행렬을 사용하여 3D 모델로 다시 투영시키고, 3D 공간 내에서 불연속면의 위치 및 범위를 정확하게 표현한다. 영역분할 모델의 성능은 영역 분할된 결과를 해당 지면 실측 값과 비교함으로써 평가하였으며, IoU(intersection-over-union) 값이 약 0.8 정도로 나타나 영역분할 결과의 높은 정확성을 확인하였다. 여전히 학습데이터가 제한적 이었음에도 불구하고, 제안 기법은 3D 모델의 점군 데이터를 불연속면의 유사군으로 그룹화하기 위해 전 막장면의 법선 벡터와 클러스터링과 같은 비지도 학습기반 알고리즘에만 의존하던 기존 접근 방식의 한계의 극복 가능성을 보여주었다.

Requirements Analysis of Image-Based Positioning Algorithm for Vehicles

  • Lee, Yong;Kwon, Jay Hyoun
    • 한국측량학회지
    • /
    • 제37권5호
    • /
    • pp.397-402
    • /
    • 2019
  • Recently, with the emergence of autonomous vehicles and the increasing interest in safety, a variety of research has been being actively conducted to precisely estimate the position of a vehicle by fusing sensors. Previously, researches were conducted to determine the location of moving objects using GNSS (Global Navigation Satellite Systems) and/or IMU (Inertial Measurement Unit). However, precise positioning of a moving vehicle has lately been performed by fusing data obtained from various sensors, such as LiDAR (Light Detection and Ranging), on-board vehicle sensors, and cameras. This study is designed to enhance kinematic vehicle positioning performance by using feature-based recognition. Therefore, an analysis of the required precision of the observations obtained from the images has carried out in this study. Velocity and attitude observations, which are assumed to be obtained from images, were generated by simulation. Various magnitudes of errors were added to the generated velocities and attitudes. By applying these observations to the positioning algorithm, the effects of the additional velocity and attitude information on positioning accuracy in GNSS signal blockages were analyzed based on Kalman filter. The results have shown that yaw information with a precision smaller than 0.5 degrees should be used to improve existing positioning algorithms by more than 10%.

비정형의 건설환경 매핑을 위한 레이저 반사광 강도와 주변광을 활용한 향상된 라이다-관성 슬램 (Intensity and Ambient Enhanced Lidar-Inertial SLAM for Unstructured Construction Environment)

  • 정민우;정상우;장혜수;김아영
    • 로봇학회논문지
    • /
    • 제16권3호
    • /
    • pp.179-188
    • /
    • 2021
  • Construction monitoring is one of the key modules in smart construction. Unlike structured urban environment, construction site mapping is challenging due to the characteristics of an unstructured environment. For example, irregular feature points and matching prohibit creating a map for management. To tackle this issue, we propose a system for data acquisition in unstructured environment and a framework for Intensity and Ambient Enhanced Lidar Inertial Odometry via Smoothing and Mapping, IA-LIO-SAM, that achieves highly accurate robot trajectories and mapping. IA-LIO-SAM utilizes a factor graph same as Tightly-coupled Lidar Inertial Odometry via Smoothing and Mapping (LIO-SAM). Enhancing the existing LIO-SAM, IA-LIO-SAM leverages point's intensity and ambient value to remove unnecessary feature points. These additional values also perform as a new factor of the K-Nearest Neighbor algorithm (KNN), allowing accurate comparisons between stored points and scanned points. The performance was verified in three different environments and compared with LIO-SAM.

복합적인 실내 환경 내 신뢰성 있는 자율 비행을 위한 3차원 장애물 지도 생성 및 경로 계획 알고리즘 (3D Costmap Generation and Path Planning for Reliable Autonomous Flight in Complex Indoor Environments)

  • 김보성;이승욱;박재용;심현철
    • 로봇학회논문지
    • /
    • 제18권3호
    • /
    • pp.337-345
    • /
    • 2023
  • In this paper, we propose a 3D LiDAR sensor-based costmap generation and path planning algorithm using it for reliable autonomous flight in complex indoor environments. 3D path planning is essential for reliable operation of UAVs. However, existing grid search-based or random sampling-based path planning algorithms in 3D space require a large amount of computation, and UAVs with weight constraints require reliable path planning results in real time. To solve this problem, we propose a method that divides a 3D space into several 2D spaces and a path planning algorithm that considers the distance to obstacles within each space. Among the paths generated in each space, the final path (Best path) that the UAV will follow is determined through the proposed objective function, and for this purpose, we consider the rotation angle of the 2D space, the path length, and the previous best path information. The proposed methods have been verified through autonomous flight of UAVs in real environments, and shows reliable obstacle avoidance performance in various complex environments.