• Title/Summary/Keyword: LiDAR 성능

Search Result 74, Processing Time 0.024 seconds

2D LiDAR based 3D Pothole Detection System (2차원 라이다 기반 3차원 포트홀 검출 시스템)

  • Kim, Jeong-joo;Kang, Byung-ho;Choi, Su-il
    • Journal of Digital Contents Society
    • /
    • v.18 no.5
    • /
    • pp.989-994
    • /
    • 2017
  • In this paper, we propose a pothole detection system using 2D LiDAR and a pothole detection algorithm. Conventional pothole detection methods can be divided into vibration-based method, 3D reconstruction method, and vision-based method. Proposed pothole detection system uses two inexpensive 2D LiDARs and improves pothole detection performance. Pothole detection algorithm is divided into preprocessing for noise reduction, clustering and line extraction for visualization, and gradient function for pothole decision. By using gradient of distance data function, we check the existence of a pothole and measure the depth and width of the pothole. The pothole detection system is developed using two LiDARs, and the 3D pothole detection performance is shown by detecting a pothole with moving LiDAR system.

Analysis of Data Characteristics by UAV LiDAR Sensor (무인항공 LiDAR 센서에 따른 데이터 특성 분석)

  • Park, Joon-Kyu;Lee, Keun-Wang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.5
    • /
    • pp.1-6
    • /
    • 2020
  • UAV (Unmanned Aerial Vehicles) are used widely for military purposes because they are more economical than general manned aircraft and satellites, and have easy access to the object. Recently, owing to the development of IT technology, UAV equipped with various sensors have been released, and their use is increasing in a wide range of fields, such as surveying, agriculture, meteorological observation, communication, broadcasting, and sports. An increasing number of studies and attempts have made use of it. On the other hand, existing research was related mostly to photogrammetry, but there has been a lack of analytical research on LiDAR (Light Detection And Ranging). Therefore, this study examined the characteristics of a UAV LiDAR sensor for the application of a geospatial information field. In this study, the performance of commercialized LiDAR sensors, such as the acquisition speed and the number of echoes, was investigated, and data acquisition and analysis were conducted by selecting Surveyor Ultra and VX15 models with similar accuracy and data acquisition distances. As a result, a DSM of each study site was generated for each sensor, and the characteristics of data density, precision, and acquisition of ground data from vegetation areas were presented through comparison. In addition, the UAV LiDAR sensor showed an accuracy of 0.03m ~ 0.05m. Hence, it is necessary to select equipment considering the characteristics of data for effective use. In the future, the use of UAV LiDAR may be suggested if additional data can be obtained and analyzed for various areas, such as urban areas and forest areas.

A Research on Improving the Shape of Korean Road Signs to Enhance LiDAR Detection Performance (LiDAR 시인성 향상을 위한 국내 교통안전표지 형상개선에 대한 연구)

  • Ji yoon Kim;Jisoo Kim;Bum jin Park
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.3
    • /
    • pp.160-174
    • /
    • 2023
  • LiDAR plays a key role in autonomous vehicles, and to improve its visibility, it is necessary to improve its performance and the detection objects. Accordingly, this study proposes a shape for traffic safety signs that is advantageous for self-driving vehicles to recognize. Improvement plans are also proposed using a shape-recognition algorithm based on point cloud data collected through LiDAR sensors. For the experiment, a DBSCAN-based road-sign recognition and classification algorithm, which is commonly used in point cloud research, was developed, and a 32ch LiDAR was used in an actual road environment to conduct recognition performance tests for 5 types of road signs. As a result of the study, it was possible to detect a smaller number of point clouds with a regular triangle or rectangular shape that has vertical asymmetry than a square or circle. The results showed a high classification accuracy of 83% or more. In addition, when the size of the square mark was enlarged by 1.5 times, it was possible to classify it as a square despite an increase in the measurement distance. These results are expected to be used to improve dedicated roads and traffic safety facilities for sensors in the future autonomous driving era and to develop new facilities.

A Research of Factors Affecting LiDAR's Detection on Road Signs: Focus on Shape and Height of Road Sign (도로표지에 대한 LiDAR 검지영향요인 연구: 도로표지의 모양과 높이를 중심으로)

  • Kim, Ji yoon;Park, Bum jin
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.4
    • /
    • pp.190-211
    • /
    • 2022
  • This study investigated the effect of the shape and height of road signs on detection performance when detecting road signs with LiDAR, which is recognized as an essential sensor for autonomous vehicles. For the study, four types of road signs with the same area and material and different shapes were produced, and a road driving test was performed by installing a 32Ch rotating LiDAR on the upper part of the vehicle. As a result of comparing the shape of the point cloud and the NPC according to the shape of the road sign, It is expected that a distance of less than 40m is required to recognize the overall shape of a road sign using 32Ch LiDAR, and shapes such as triangles and rectangles are more advantageous than squares in securing the maximum point cloud from a long distance. As a result of the study according to the height of the road sign, At short distances (within 20m), if the height of the sign is raised to more than 2m, it deviates from the vertical viewing angle of the LiDAR and cannot express the complete point cloud shape. However, it showed a negligible effect compared to the near-field height change. These research results are expected to be utilized in the development of road facilities dedicated to LiDAR for the commercialization of autonomous cooperative driving technology.

Camera and LiDAR Sensor Fusion for Improving Object Detection (카메라와 라이다의 객체 검출 성능 향상을 위한 Sensor Fusion)

  • Lee, Jongseo;Kim, Mangyu;Kim, Hakil
    • Journal of Broadcast Engineering
    • /
    • v.24 no.4
    • /
    • pp.580-591
    • /
    • 2019
  • This paper focuses on to improving object detection performance using the camera and LiDAR on autonomous vehicle platforms by fusing detected objects from individual sensors through a late fusion approach. In the case of object detection using camera sensor, YOLOv3 model was employed as a one-stage detection process. Furthermore, the distance estimation of the detected objects is based on the formulations of Perspective matrix. On the other hand, the object detection using LiDAR is based on K-means clustering method. The camera and LiDAR calibration was carried out by PnP-Ransac in order to calculate the rotation and translation matrix between two sensors. For Sensor fusion, intersection over union(IoU) on the image plane with respective to the distance and angle on world coordinate were estimated. Additionally, all the three attributes i.e; IoU, distance and angle were fused using logistic regression. The performance evaluation in the sensor fusion scenario has shown an effective 5% improvement in object detection performance compared to the usage of single sensor.

Spherical Point Tracing for Synthetic Vehicle Data Generation with 3D LiDAR Point Cloud Data (3차원 LiDAR 점군 데이터에서의 가상 차량 데이터 생성을 위한 구면 점 추적 기법)

  • Sangjun Lee;Hakil Kim
    • Journal of Broadcast Engineering
    • /
    • v.28 no.3
    • /
    • pp.329-332
    • /
    • 2023
  • 3D Object Detection using deep neural network has been developed a lot for obstacle detection in autonomous vehicles because it can recognize not only the class of target object but also the distance from the object. But in the case of 3D Object Detection models, the detection performance for distant objects is lower than that for nearby objects, which is a critical issue for autonomous vehicles. In this paper, we introduce a technique that increases the performance of 3D object detection models, particularly in recognizing distant objects, by generating virtual 3D vehicle data and adding it to the dataset used for model training. We used a spherical point tracing method that leverages the characteristics of 3D LiDAR sensor data to create virtual vehicles that closely resemble real ones, and we demonstrated the validity of the virtual data by using it to improve recognition performance for objects at all distances in model training.

Performance Evaluation Using Neural Network Learning of Indoor Autonomous Vehicle Based on LiDAR (라이다 기반 실내 자율주행 차량에서 신경망 학습을 사용한 성능평가 )

  • Yonghun Kwon;Inbum Jung
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.12 no.3
    • /
    • pp.93-102
    • /
    • 2023
  • Data processing through the cloud causes many problems, such as latency and increased communication costs in the communication process. Therefore, many researchers study edge computing in the IoT, and autonomous driving is a representative application. In indoor self-driving, unlike outdoor, GPS and traffic information cannot be used, so the surrounding environment must be recognized using sensors. An efficient autonomous driving system is required because it is a mobile environment with resource constraints. This paper proposes a machine-learning method using neural networks for autonomous driving in an indoor environment. The neural network model predicts the most appropriate driving command for the current location based on the distance data measured by the LiDAR sensor. We designed six learning models to evaluate according to the number of input data of the proposed neural networks. In addition, we made an autonomous vehicle based on Raspberry Pi for driving and learning and an indoor driving track produced for collecting data and evaluation. Finally, we compared six neural network models in terms of accuracy, response time, and battery consumption, and the effect of the number of input data on performance was confirmed.

Development of Left Turn Response System Based on LiDAR for Traffic Signal Control

  • Park, Jeong-In
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.11
    • /
    • pp.181-190
    • /
    • 2022
  • In this paper, we use a LiDAR sensor and an image camera to detect a left-turning waiting vehicle in two ways, unlike the existing image-type or loop-type left-turn detection system, and a left-turn traffic signal corresponding to the waiting length of the left-turning lane. A system that can efficiently assign a system is introduced. For the LiDAR signal transmitted and received by the LiDAR sensor, the left-turn waiting vehicle is detected in real time, and the image by the video camera is analyzed in real time or at regular intervals, thereby reducing unnecessary computational processing and enabling real-time sensitive processing. As a result of performing a performance test for 5 hours every day for one week with an intersection simulation using an actual signal processor, a detection rate of 99.9%, which was improved by 3% to 5% compared to the existing method, was recorded. The advantage is that 99.9% of vehicles waiting to turn left are detected by the LiDAR sensor, and even if an intentional omission of detection occurs, an immediate response is possible through self-correction using the video, so the excessive waiting time of vehicles waiting to turn left is controlled by all lanes in the intersection. was able to guide the flow of traffic smoothly. In addition, when applied to an intersection in the outskirts of which left-turning vehicles are rare, service reliability and efficiency can be improved by reducing unnecessary signal costs.

Time-series Change Analysis of Quarry using UAV and Aerial LiDAR (UAV와 LiDAR를 활용한 토석채취지의 시계열 변화 분석)

  • Dong-Hwan Park;Woo-Dam Sim
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.27 no.2
    • /
    • pp.34-44
    • /
    • 2024
  • Recently, due to abnormal climate caused by climate change, natural disasters such as floods, landslides, and soil outflows are rapidly increasing. In Korea, more than 63% of the land is vulnerable to slope disasters due to the geographical characteristics of mountainous areas, and in particular, Quarry mines soil and rocks, so there is a high risk of landslides not only inside the workplace but also outside.Accordingly, this study built a DEM using UAV and aviation LiDAR for monitoring the quarry, conducted a time series change analysis, and proposed an optimal DEM construction method for monitoring the soil collection site. For DEM construction, UAV and LiDAR-based Point Cloud were built, and the ground was extracted using three algorithms: Aggressive Classification (AC), Conservative Classification (CC), and Standard Classification (SC). UAV and LiDAR-based DEM constructed according to the algorithm evaluated accuracy through comparison with digital map-based DEM.

Development of Collision Prevention System for Agricultural Unmanned Helicopter (LiDAR를 이용한 농업용 무인헬기 충돌방지시스템 개발)

  • Jeong, Junho;Gim, Hakseong;Lee, Dongwoo;Suk, Jinyoung;Kim, Seungkeun;Kim, Jingu;Ryu, Si-dae;Kim, Sungnam
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.7
    • /
    • pp.611-619
    • /
    • 2016
  • This paper proposes a collision prevention system for an agricultural unmanned helicopter. The collision prevention system consists of an obstacle detection system, a mapping algorithm, and a collision avoidance algorithm. The obstacle detection system based on a LiDAR sensor is implemented in the unmanned helicopter and acquires distance information of obstacles in real-time. Then, an obstacle mapping is carried out by combining the distance to the obstacles with attitude/location data of the unmanned helicopter. In order to prevent a collision, alert is activated to an operator based on the map when the vehicle approaches to the obstacles. Moreover, the developed collision prevention system is verified through flight test simulating a flight pattern aerial spraying.