• Title/Summary/Keyword: LiBr/water system

Search Result 63, Processing Time 0.024 seconds

Thermodynamic Analysis of a Double-Effect Absorption Heating System Using Water-LiBr-LiSCN Solution with Solar Evaporator Heating (증발기 열원으로 태양열을 이용하며 LiSCN+LiBr 수용액을 사용하는 흡수식 2중효용 난방시스템의 열역학적 해석)

  • Won, Seung-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.25 no.3
    • /
    • pp.27-35
    • /
    • 2005
  • In this paper, a thermodynamic analysis was performed to provide design data for a double-effect absorption heating system with water-LiBr-LiSCN mixture which utilizes solar energy as evaporator heat source. In addition, a comparative study of the water-LiBr-LiSCN mixture against the water-LiBr pair was conducted by a computer simulation. The computer simulation is based on mass, material and heat balance equations for each part of the system. Coefficients of performance and flow ratios for effects of different operating temperatures are investigated. It is found that the heating COP is higher for the water-LiBr-LiSCN mixture than for the water-LiBr pair, and FR is lower for the former.

Thermodynamic Analysis of a Double-Effect Absorption Heating System Using Water-LiBr- LiSCN Solution As $20{\sim}40^{\circ}C$ Range Solar Evaporator Heating (태양열을 증발기 열원으로 사용($20{\sim}40^{\circ}C$범위)하며 LiSCN+LiBr 수용액을 사용하는 흡수식 2중효용 난방시스템의 열역학적 해석)

  • Won, Seung-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.26 no.4
    • /
    • pp.73-81
    • /
    • 2006
  • In this paper, with water-LiBr-LiSCN mixture which utilizes solar energy as mid temperature range evaporator heat source, a thermodynamic analysis was performed to provide design data for a double-effect absorption heating system. A comparative study of the water-LiBr-LiSCN mixture against the water-LiBr pair was conducted by a computer simulation. The computer simulation is based on mass, material and heat balance equations for each part of the system. Coefficients of performance and flow ratios for effects of different operating temperatures are investigated. It is found that the heating COP is higher for the water-LiBr-LiSCN mixture than for the water-LiBr pair, and FR is lower for the former.

Analysis of Thermodynamic Design Data of Double-Effect Absorption System for Heating using LiCl-water for Evaporator Heating Source of Solar Energy (흡수식 2중효용 시스템의 증발기 열원으로 태양열을 이용하는 LiCl 수용액 난방시스템 해석)

  • Won, Seung-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.24 no.3
    • /
    • pp.39-46
    • /
    • 2004
  • In this paper, thermodynamic design data for heating of double-effect absorption system using LiCl-water for evaporator heating source of sofar energy are investigated for the water-LiCl pair and a comparative study of the water-LiCl pair with the water-LiBr pair is given used for the computer simulation. The computer simulation is based on mass, material and heat balance equations for each part of the system. Coefficients of performance and flow ratios for effects of different operating temperatures are investigated. It is found that the heating COP is higher for the water -LiCl pair than for the water-LiBr pair, and FR is lower for the water-LiCl pair than for the water LiBr pair.

Cycle Analysis of Hot Water Driven Absorption Refrigerator with New Working Absorption Solution (신흡수용액을 이용한 중온수 흡수식 냉동기의 사이클 해석)

  • Gwon, O-Gyeong;Yun, Jae-Ho;Mun, Chun-Geun;Yun, Jeong-In
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.9
    • /
    • pp.1241-1248
    • /
    • 2002
  • Performance extension of the absorption refrigerator with LiBr solution is often faced to operate very close to the crystallization limit. Especially in the development of an air-cooled cycle, the crystallization of working solution in the system is a very difficult problem to overcome. This paper describes the cycle of hot water driven absorption system using a new working absorption solution instead of LiBr solution to improve the efficiency. In this study, we found out the characteristics of new working absorption solution through the cycle simulation and compared LiBr solution to evaluate. The effect of cooling water temperature, weak solution flow rate, hot water temperature and hot water flow rate were also examined. The COP is increased 22% higher in the case of LiBr+Li1+LiC1+LiNO$_3$$H_2O$, 2% LiBr+HO(CH$_2$)$_3$OH+$H_2O$ than that of LiBr solution for the same operation condition.

Experiments on a Regenerator with Thermosyphon for Absorption Heat Pumps (기포 펌프를 적용한 흡수식 열펌프용 고온 재생기의 작동 특성 실험)

  • Park, C.W.;Jurng, J.;Nam, P.W.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.8 no.4
    • /
    • pp.463-472
    • /
    • 1996
  • Experiments were carried out to study the operation characteristics of a regenerator with a thermo-syphon pump and a surface-flame burner for a lithium bromide (LiBr)-water absorption heat pump. A cylindrical-shape metal-fiber burner and commercial grade propane were used. The emission of carbon monoxide and nitric oxide was measured by a combustion gas analyzer. Ther regeneration rate of water vapor as a refrigerant was measured. It could be as a reference value showing the performance of the regenerator. The circulation rate of the LiBr-water solution was also measured from both the tanks for the weak-and the strong-solution. Using a refractometer, the LiBr concetration in the solution was calculated from the measured refractory index of the solution. Temperature of the solution and the condensed water was recorded at several points in the experimental apparatus with thermocouples, using a personal computer. This data collecting system for measuring temperature was calibrated with a set of standard thermometers. The generating rate of water vapor as refrigerant increased linearly with heat supplied. It was about 4.0g/s with the heat supplied at a rate of 16,500kcal/h. The circulation rate of LiBr solution also increases with the heat supplied. The difference in LiBr concentrations between the weak and the strong solution was in the range of 1 to 5% when the concentration of the strong solution was about 60%. It was dependent upon both the heat supplied and the circulation rate of the solution. The initial concentration and the level of the LiBr solution in the regenerator were measured and recorded before experiments. The effect of them on the generating rate of water vapor and the circulation rate of the solution was also studied. The generating rate of water vapor was not strongly dependent upon both the level of the LiBr solution and the initial LiBr concentration. However, the concentration difference of the solution increases with the initial level of the LiBr solution.

  • PDF

Thermodynamic Analysis of Double-effect Absorption Heat Pump System with New Working Pairs (작동매체에 따른 2중효용 흡수식 시스템의 성능해석)

  • Won, S.H.;Lee, Y.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.3 no.4
    • /
    • pp.250-255
    • /
    • 1991
  • Performance analysis of double-effect absorption heat pump system has been done to find improved working pairs (or mixture) by computer simulation. Based on the thermodynamic analysis, the coefficient of performance and mass flow ratio are investigated to compare three aqueous solutions [LiCl-water, LiSCN-LiBr-water, LiCl-$CaCl_2$-$Zn(NO_3)_2$-water] which was developed for only cooling, with conventional LiBr-water solution. It is found that the performances of the new aqueous solutions are better than that of LiBr-water solution not only in cooling systems, but also in heating systems. Theoretical thermodynamic performance data can be used in heat recovery systems by basic design data.

  • PDF

Cycle simulation of a triple effect LiBr/water absorption chiller (삼중효용 LiBr/물 흡수식 냉방기의 사이클 시뮬레이션)

  • 조광운;정시영;정은수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.1
    • /
    • pp.79-87
    • /
    • 1998
  • Basic design of a 50USRT(175㎾) triple effect absorption chiller driven by hot gas has been carried out for both parallel and series flow cycles. Parallel flow cycle showed higher COP, however, the temperature in the generator was also higher than that in series flow cycle. Dynamic operation behavior of a parallel flow system at off-design conditions, such as the change in heat transfer medium temperature or the construction change of the system components, has been investigated in detail. It was found that the cooling capacity was seriously decreased by reducing hot gas flow rate and UA-value in the high temperature generator. However, the system COP was improved, because thermal load in the system components was reduced. The COP and the cooling capacity was found to be improved as cooling water temperature decreased or chilled water temperature increased. The optimum ratio of solution distribution could be suggested by considering the COP, the cooling capacity and the highest temperature in the system, which is critical for corrosion.

  • PDF

Characteristic Analysis of Double Effect Absorption Refrigeration Machine using $H_{2}O/LiBr+HO{(CH_{2})}_{3}OH$ ($H_{2}O/LiBr+HO{(CH_{2})}_{3}OH$를 이용한 2중 효용 흡수식 냉동기 특성해석)

  • 문춘근
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.6
    • /
    • pp.792-799
    • /
    • 1998
  • Further improvement of existing $H_{2}O/LiBr$ absorption refrigeration machine is absolutely neces-sary to promote the utilization of gas-cooling system Among various methods to improve the per-formance of the absorption refrigeration machine this research has focused on the use of a new working fluid that has better properties than the existing $H_{2}O/LiBr$ working fluid. In the series of the research, $H_{2}O/LiBr+HO{(CH_{2})}_{3}OH$ system was selected as the most promisable candidate. The absorption refrigeration machine is water-cooled double-effect, $H_{2}O/LiBr+HO{(CH_{2})}_{3}OH$ sys-tem with series flow type. In this study we found out the characteristic of new working solution through the cycle simulation and compared the result with that of LiBr solution to evaluate. Theoptimum designs and operating conditions were determined based on the operating constraints and the coefficient of performance. Results demonstrate that new working fluid subsrantially increases COP by as much as 10% and has a wider working range with 8% higher crystallization limits compared to the conventional $H_{2}O/LiBr$.

  • PDF

Solubility, vapor pressure, duhring and enthalpy-concentration charts of$H_2$O/(LiBr+$CaC1_2$) solution as a new working fluid ($H_2$O/(LiBr+$CaC1_2$) 3성분계 작동매체의 용해도, 증기압측정 및 듀링 선도, 엔탈피-농도 선도 작성)

  • 이형래;구기갑;정시영
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.6
    • /
    • pp.666-673
    • /
    • 1998
  • Solubilities (LiBr+$CaC1_2$) in water were measured at temperatures form 267.51 to 306.17K for $CaC1_2$ (LiBr+$CaC1_2$)=0.24 by mole. Experimental data were correlated with polynomial equations. Average absolute deviations between the measured and calculated values were 0.31% at concentration smaller than 60wt% and 0.41% at concentration larger than 60wt%, respectively. Vapor pressures were measured at temperatures from 296.75 to 436.75K and concentrations from 40 to 70wt%. Vapor pressure data were fitted to a Antoine-type equation and average absolute deviation was 2.98%. The P-T-X chart and H-T-X chart of $H_2O$/(LiBr+$CaC1_2$) system were constructed by using the correlation equations of solubility, vaper pressure, and heat capacity. The P-T-X chart indicates that $H_2O$/(LiBr+$CaC1_2$) system has potential as a possible working fluid for air-cooled absorption chillers.

  • PDF

Development of Absorption fluid with Water-Lithium bromide-Lithium nitrate system (Water-Lithium bromide-Lithium nitrate계 흡수용액 개발)

  • 오영삼;주우성;박달령;조원일;백영순;방효선
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1996.10b
    • /
    • pp.190-192
    • /
    • 1996
  • 본 연구는 기존의 Water-Lithium Bromide(H2O/LiBr) 용액에 비해 부식성이 낮은 Water-Lithium bromide-Lithium Nitrate계(H2O/LiBr-LiNO3)용액의 용해도, 증기압, 점도, 표면장력 등의 물리적 성질을 조사하였다. 또한 용해도가 가장 큰 최적의 혼합 몰비를 구하여 증기압 및 점도, 표면장력등의 물성을 구함으로써 흡수식 냉온수기용 홉수제 개발의 기본 자료를 확보하였다. 이러한 연구 결과로부터 다성분 Lithium 염 혼합물계로 이루어진 흡수용액 개발의 기초자료로 이용하고자 한다.

  • PDF