• Title/Summary/Keyword: Li-ion

Search Result 1,321, Processing Time 0.027 seconds

Studies on Multi-step Addition of NMP in (LiNi0.80Co0.15Al0.05) (NCA) Cathode Slurry Preparation and its Rheological, Mechanical Strength and Electrochemical Properties for Li-ion Cells

  • Vasudevarao Pasala;Satyanarayana Maddukuri;V. Sethuraman;Rekha Lankipalli;Devi Gajula;Venkateswarlu Manne
    • Journal of Electrochemical Science and Technology
    • /
    • 제14권3호
    • /
    • pp.262-271
    • /
    • 2023
  • For electrode stability and the electrochemical performance of the Li-ion cell, it is essential that the active ingredients and unique additives in the polymer binder be well dispersed with the solvent-based slurry. The efficient procedure used to create the slurry affects the rheological characteristics of the electrode slurry. When successively adding different steps of Nmethyl-2-pyrrolidone (NMP) solvent to the cathode composition, it is evenly disseminated. The electrochemical performance of the Li-ion cells and the electrodes made with slurry formed by single step and multiple steps of addition of NMP solvent are examined. To preform rheological properties of cathode electrode slurry on Ni-rich Lithium Nickel-Cobalt-Aluminum Oxide (LiNi0.80Co0.15Al0.05) (NCA). Also, we investigate different step addition of electrode formation and mechanical strength characterization like peel strength. According to the EIS study, a multi-step electrode slurry has lower internal resistance than a single-step electrode slurry, which results in better electrical characteristics and efficiency. Further, microstructure of electrodes is obtained electrochemical performance in the 18650 cylindrical cells with targeted capacity of 1.5 Ah. The slurry of electrodes prepared by single step and multiple steps of addition of NMP solvent and its effect on the fabrication of 1.5 Ah cells. A three-step solvent addition on slurry has been found to be a lower internal resistance than a single-step electrode slurry as confirmed by the EIS analysis, yielding improved electrical properties and efficiency.

Development of 600-MHz 19F-7Li Solid-State NMR Probe for In-Situ Analysis of Lithium Ion Batteries

  • Jeong, Ji-Ho;Park, Yu-Geun;Choi, Sung-Sub;Kim, Yongae
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권11호
    • /
    • pp.3253-3256
    • /
    • 2013
  • Lithium is a highly attractive material for high-energy-concentration batteries, since it has low weight and high potential. Rechargeable lithium-ion batteries (LIBs), which have the extremely high gravimetric and volumetric energy densities, are currently the most preferable power sources for future electric vehicles and various portable electronic devices. In order to improve the efficiency and lifetime, new electrode compounds for lithium intercalation or insertion have been investigated for rechargeable batteries. Solid-state nuclear magnetic resonance (NMR) is a very useful tool to investigate the structural changes in electrode materials in actual working lithium-ion batteries. To detect the in-situ microstructural changes of electrode and electrolyte materials, $^7Li-^{19}F$ double-resonance solid-state NMR probe with a static solenoidal coil for a 600-MHz narrow-bore magnet was designed, constructed, and tested successfully.

Germanium Nanoparticle-Dispersed Reduced Graphene Oxide Balls Synthesized by Spray Pyrolysis for Li-Ion Battery Anode

  • Kim, Jin Koo;Park, Gi Dae;Kang, Yun Chan
    • 한국세라믹학회지
    • /
    • 제56권1호
    • /
    • pp.65-70
    • /
    • 2019
  • Simple fabrication of a powdered Ge-reduced graphene oxide (Ge-rGO) composite via spray pyrolysis and reduction is introduced herein. Successful incorporation of the rGO nanosheets with Ge hindered the aggregation of Ge and conferred enhanced structural stability to the composite by alleviating the mechanical stress associated with drastic volume changes during repeated cycling. The Li-ion storage performance of Ge-rGO was compared with that of powdered Ge metal. The reversible discharge capacity of Ge-rGO at the $200^{th}$ cycle was $748mA\;h\;g^{-1}$ at a current density of $1.0A\;g^{-1}$ and Ge-rGO showed a capacity of $375mA\;h\;g^{-1}$ even at a high current density of $5.0A\;g^{-1}$. The excellent performance of Ge-rGO is attributed to the structural robustness, enhanced electrical conductivity, and formation of open channels between the rGO nanosheets, which facilitated electrolyte penetration for improved Li-ion diffusion.

등가회로 파라미터를 이용한 배터리 잔존 수명 평가용 뉴로 퍼지 시스템 (Neuro Fuzzy System for the Estimation of the Remaining Useful Life of the Battery Using Equivalent Circuit Parameters)

  • 이승준;고영휘;델리키첼라 칸달라 프라듐나;최우진
    • 전력전자학회논문지
    • /
    • 제26권3호
    • /
    • pp.167-175
    • /
    • 2021
  • Reusing electric vehicle batteries after they have been retired from mobile applications is considered a feasible solution to reduce the demand for new material and electric vehicle costs. However, the evaluation of the value and the performance of second-life batteries remain a problem that should be solved for the successful application of such batteries. The present work aims to estimate the remaining useful life of Li-ion batteries through the neuro-fuzzy system with the equivalent circuit parameters obtained by Electrochemical Impedance Spectroscopy (EIS). To obtain the impedance spectra of the Li-ion battery over the life, a 18650 cylindrical cell has been aged by 1035 charge/discharge cycles. Moreover, the capacity and the parameters of the equivalent circuit of a Li-ion battery have been recorded. Then, the data are used to establish a neuro-fuzzy system to estimate the remaining useful life of the battery. The experimental results show that the developed algorithm can estimate the remaining capacity of the battery with an RMSE error of 0.841%.

Enhancing Electrochemical Performance of Co(OH)2 Anode Materials by Introducing Graphene for Next-Generation Li-ion Batteries

  • Kim, Hyunwoo;Kim, Dong In;Yoon, Won-Sub
    • Journal of Electrochemical Science and Technology
    • /
    • 제13권3호
    • /
    • pp.398-406
    • /
    • 2022
  • To satisfy the growing demand for high-performance batteries, diverse novel anode materials with high specific capacities have been developed to replace commercial graphite. Among them, cobalt hydroxides have received considerable attention as promising anode materials for lithium-ion batteries as they exhibit a high reversible capacity owing to the additional reaction of LiOH, followed by conversion reaction. In this study, we introduced graphene in the fabrication of Co(OH)2-based anode materials to further improve electrochemical performance. The resultant Co(OH)2/graphene composite exhibited a larger reversible capacity of ~1090 mAh g-1, compared with ~705 mAh g-1 for bare Co(OH)2. Synchrotron-based analyses were conducted to explore the beneficial effects of graphene on the composite material. The experimental results demonstrate that introducing graphene into Co(OH)2 facilitates both the conversion and reaction of the LiOH phase and provides additional lithium storage sites. In addition to insights into how the electrochemical performance of composite materials can be improved, this study also provides an effective strategy for designing composite materials.

Synthesis of TiO2 nanoparticles induced by electron beam irradiation and their electrochemical performance as anode materials for Li-ion batteries

  • Ahn, Ja-Hwa;Eom, Ji-Yong;Kim, Jong-Huy;Kim, Hye Won;Lee, Byung Cheol;Kim, Sung-Soo
    • Journal of Electrochemical Science and Technology
    • /
    • 제6권3호
    • /
    • pp.75-80
    • /
    • 2015
  • We introduce a new synthesis method to prepare small TiO2 nanoparticles with a narrow particle size distribution, which is achieved by electron beam (E-beam) irradiation. The effects of E-beam irradiation on the synthesis of TiO2 nanoparticles and the electrochemical performance of TiO2 nanoparticles as alternative anode materials for Li-ion batteries are investigated. The TiO2 nanoparticles induced by E-beam irradiation present better cycling performance and rate capability than the TiO2 nanoparticles synthesized by normal hydrolysis reaction. The better electrochemical performance is attributed to small particle size and narrow particle size distribution, resulting in the large surface area that provides innumerable reaction sites and short diffusion length for Li+ through TiO2 nanoparticles.

리튬이온 전지의 초기 흡착 거동 해석 (Analysis of the initial absorbing behavior of Li ion battery)

  • 정철수;이도원
    • 한국진공학회지
    • /
    • 제16권3호
    • /
    • pp.227-230
    • /
    • 2007
  • 리튬이온 제조공정에서 전해질 주입 후 반드시 거쳐야 하는 숙성공정은 일반적으로 별로 중요하게 다루어 지지 않고 있다. 왜냐하면 전지 숙성공정이 전지성능에 영향을 주는 인자에 대하여 그다지 깊이 있게 연구가 되어있지 않기 때문이다. 하지만 숙성공정 중에 나타나는 OCV 변화는 전해질 내에 포함되어 있는 성분이 전극으로 전기화학적 흡착되어 나타나는 현상으로 SEI 피막 형성에 매우 중요한 역할을 하게 된다. 이에 본 연구에서는 숙성기간 중에 변하게 되는 OCV와 SEI피막의 관계, 그리고 전지성능과의 연계에 대하여 깊이 있게 논의하고자 한다.

Estimating the State-of-Charge of Lithium-Ion Batteries Using an H-Infinity Observer with Consideration of the Hysteresis Characteristic

  • Xie, Jiale;Ma, Jiachen;Sun, Yude;Li, Zonglin
    • Journal of Power Electronics
    • /
    • 제16권2호
    • /
    • pp.643-653
    • /
    • 2016
  • The conventional methods used to evaluate battery state-of-charge (SOC) cannot accommodate the chemistry nonlinearities, measurement inaccuracies and parameter perturbations involved in estimation systems. In this paper, an impedance-based equivalent circuit model has been constructed with respect to a LiFePO4 battery by approximating the electrochemical impedance spectrum (EIS) with RC circuits. The efficiencies of approximating the EIS with RC networks in different series-parallel forms are first discussed. Additionally, the typical hysteresis characteristic is modeled through an empirical approach. Subsequently, a methodology incorporating an H-infinity observer designated for open-circuit voltage (OCV) observation and a hysteresis model developed for OCV-SOC mapping is proposed. Thereafter, evaluation experiments under FUDS and UDDS test cycles are undertaken with varying temperatures and different current-sense bias. Experimental comparisons, in comparison with the EKF based method, indicate that the proposed SOC estimator is more effective and robust. Moreover, test results on a group of Li-ion batteries, from different manufacturers and of different chemistries, show that the proposed method has high generalization capability for all the three types of Li-ion batteries.

Surface Coating and Electrochemical Properties of LiNi0.8Co0.15Al0.05O2 Polyaniline Composites as an Electrode for Li-ion Batteries

  • Chung, Young-Min;Ryu, Kwang-Sun
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권8호
    • /
    • pp.1733-1737
    • /
    • 2009
  • A new cathode material based on Li$Ni_{0.8}Co_{0.15}Al_{0.05}O_2$ (LNCA)/polyaniline (Pani) composite was prepared by in situ self-stabilized dispersion polymerization in the presence of LNCA. The materials were characterized by fourier transform infrared spectroscopy (FT-IR), ultraviolet-visible spectroscopy (UV-Vis), X-ray diffraction (XRD), and scanning electron microscopy (SEM). Electrochemical properties including galvanostatic charge-discharge ability, cyclic voltammetry (CV), capacity, cycling performance, and AC impedance were measured. The synthesized LNCA/Pani had a similar particle size to LNCA and exhibited good electrochemical properties at a high C rate. Pani (the emeraldine salt form) interacts with metal-oxide particles to generate good connectivity. This material shows good reversibility for Li insertion in discharge cycles when used as the electrode of lithium ion batteries. Therefore, the Pani coating is beneficial for stabilizing the structure and reducing the resistance of the LNCA. In particular, the LNCA/Pani material has advantageous electrochemical properties.

Recent Development in the Rate Performance of Li4Ti5O12

  • Lin, Chunfu;Xin, Yuelong;Cheng, Fuquan;Lai, Man On;Zhou, Henghui;Lu, Li
    • Applied Science and Convergence Technology
    • /
    • 제23권2호
    • /
    • pp.72-82
    • /
    • 2014
  • Lithium-ion batteries (LIBs) have become popular electrochemical devices. Due to the unique advantages of LIBs in terms of high operating voltage, high energy density, low self-discharge, and absence of memory effects, their application range, which was primarily restricted to portable electronic devices, is now being extended to high-power applications, such as electric vehicles (EVs) and hybrid electrical vehicles (HEVs). Among various anode materials, $Li_4Ti_5O_{12}$ (LTO) is believed to be a promising anode material for high-power LIBs due to its advantages of high working potential and outstanding cyclic stability. However, the rate performance of LTO is limited by its intrinsically low electronic conductivity and poor $Li^+$ ion diffusion coefficient. This review highlights the recent progress in improving the rate performance of LTO through doping, compositing, and nanostructuring strategies.