• Title/Summary/Keyword: Li-S Battery

Search Result 253, Processing Time 0.025 seconds

Study of a High Energy Density Battery Using a 3D Sulfur Electrode (3D S 전극을 활용한 고에너지밀도 전지 연구)

  • Song, Da-in
    • New & Renewable Energy
    • /
    • v.16 no.4
    • /
    • pp.1-8
    • /
    • 2020
  • The possibility of conversion to the RC-MAT propulsion system (gasoline engine → electric motor) was studied. However, as commercial battery capacities are low. it is not possible to change the propulsion system. Nevertheless, development of nex-generation batteries is necessary for high capacity and high energy density. Although Li/S batteries are theoretically suitable as new generation batteries, these batteries are not composed of only Li and S. Hence, ensuring high energy density can be difficult. Moreover, electrolytes are important components in the study of energy density; hence, the battery by Li2S8 Molarity was sorted. There are no studied on its various electrode components. In this study, a Li/S battery was fabricated using an assorted 3D sulfur electrode of high energy density and its electrochemical properties were studied. The Li/S battery has a high energy density of 468 Wh/kg at 1.28 M Li2S8 (A805-1.28). Its capacity rapidly decreased after 1 cycle with more than 1 M Li2S8.

Electrochemical Properties on High Temperature Operating Battery by Electrolyte and Salts in Electrodes (고온 작동형 전지의 전해질 및 전극내 첨가염 변화에 따른 전기화학적 특성 연구)

  • Choi, Yu-Song;Ha, Sang-Hyun;Cho, Sung-Baek
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.740-746
    • /
    • 2011
  • Thermally activated batteries have good stability, reliability and long shelf life. Due to these characteristics and operational mechanism, thermal batteries are usually applied to military power sources. Especially, Li/$FeS_2$ thermal batteries, which are used mostly in these days, use LiCl-KCl and LiBr-LiCl-LiF as electrolytes. The electrochemistry of thermal batteries have been researched for long time, however, electrochemical study using impedance spectroscopy was not published so much. Through this research, microscopic electrochemical research was investigated with electrochemical impedance spectroscopy(E.I.S). Electrolyte effects on Li/$FeS_2$ thermal battery was researched changing electrolytes, LiCl-KCl and LiBr-LiCl-LiF. Additionally, the salts, which are added to electrolytes, effects on thermal battery were researched. It is expected that the impedance spectroscopy analysis is applicable to not only thermal battery electrochemical study effectively, but also, thermal battery developments.

Effects of Conductive Material on $LiCoO_2$ Cathode for the Lithium ion Battery (리튬이온전지용 $LiCoO_2$ 정극의 도전재료에 따른 특성)

  • Coh Chil Hoon;Moon Seong In;Hyung Yoo Eup;Yun Mun Soo;Park Chun Jun;Yun Duk Hyun;Yun Suong Kyu
    • Journal of the Korean Electrochemical Society
    • /
    • v.2 no.2
    • /
    • pp.88-92
    • /
    • 1999
  • The apparent density. self-separation of the electrode composite from current collector in the electrolyte solution and specific resistance of electronic conduction of the electrode composite were examined by the variation of content of conductive material such as graphitic and black carbons in $LiCoO_2$ composite electrode for lithium ion battery. Increasing the content of conductive material, the apparent density of Lico02 composite electrode was decreased and that of $LiCoO_2$ in composite electrode was only rapidly decreased compared to that of composite. $LiCoO_2$ composite electrodes containing more than 4.1 weight percent of super s black as a conductive material were seU-separated by the immersion into 1 mol/I $LiPF_6$ in propylene carbonate and diethyl carbonate (1:1 volume ratio). Specific resistances related to the electronic conduction of composite electrode were decreased by the increasing the content i)f conductive material. Specific resistance of the composite electrode including $2\~3\%w/w$ of super s black as conductive material was similar to that of $12\%w/w$ of Lonza KS6. In the range of this study, super s black as conductive material is better than Lonza KS6 on battery capacity because of apparent density of $LiCoO_2$ in electrode composite including super s black is higher than that of Lonza KS6.

Charge/Discharge characteristics of Li ion battery according to weight ratio of cathode to anode (리튬이온전지의 정.부극 중량비에 따른 전지의 충방전특성)

  • Eom, S.W.;Doh, C.H.;Hyung, Y.U.;Moon, S.I.;Yeom, D.H.;Yun, S.K.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07c
    • /
    • pp.1412-1413
    • /
    • 1996
  • Li ion battery have many advantages such as high energy density, high voltage and low self discharge, so it will replace conventional Ni/Cd battery. But, charge-discharge characterization of Li battery is controlled by weight ratio of electrodes (Cathode/Anode). So, we performed a study on relation between charge/discharge characterization and weight ratio (cathode/anode).

  • PDF

The Effects of the Nano-sized Adsorbing Material on the Electrochemical Properties of Sulfur Cathode for Lithium/Sulfur Secondary Battery (나노 흡착제가 Li/S 이차전지용 유황양극의 전기화학적 특성에 미치는 영향)

  • Song, Min-Sang;Han, Sang-Choel;Kim, Hyun-Seok;Ahn, Hyo-Jun;Lee, Jai-Young
    • Journal of Hydrogen and New Energy
    • /
    • v.13 no.4
    • /
    • pp.259-269
    • /
    • 2002
  • A battery based on the lithium/elemental sulfur redox couple has the advantage of high theoretical specific capacity of 1,675 mAh/g-sulfur. However, Li/S battery has bad cyclic durability at room temperature due to sulfur active material loss resulting from lithium polysulfide dissolution. To improve the cycle life of Li/S battery, PEGDME (Poly(ethylene glycol) dimethyl ether) 500 containing 1M LiTFSI salt which has high viscosity was used as electrolyte to retard the polysulfide dissolution and nano-sized $Mg_{0.6}Ni_{0.4}O$ was added to sulfur cathode as additive to adsorb soluble polysulfide within sulfur cathode. From experimental results, the improvement of the capacity and cycle life of Li/S battery was observed( maximum discharge capacity : 1,185 mAh/g-sulfur, C50/C1 = 85 % ). Through the charge-discharge test, we knew that PEGDME 500 played a role of preventing incomplete charge-discharge $behavior^{1,2)$. And then, in sulfur dissolution analysis and rate capability test, we first confirmed that nano-sized $Mg_{0.6}Ni_{0.4}O$ had polysulfide adsorbing effect and catalytic effect of promoting the Li/S redox reaction. In addition, from BET surface area analysis, we also verified that it played the part of increasing the porosity of sulfur cathode.

Single Cell Li-ion Battery Charger (Single Cell Li-ion 전지 충전 IC)

  • Lee, Rock-Hyun;Kim, Jun-Sik;Park, Shi-Hong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.7
    • /
    • pp.576-579
    • /
    • 2009
  • This paper suggests a autonomous linear Li-ion battery charger which can safely distribute power between an external power source(AC adapter, auto adapter, or USB source), battery, and the system load. Depending on an external power source's capability, the charger selects proper charging-mode automatically. The charger IC designed and fabricated on Dongbu HITEC's $0.35{\mu}m$ BCD process with layers of one poly and three metals.

A Single Cell Li-ion Battery Charger (Single Cell Li-ion 전지 충전 IC)

  • Lee, Rock-Hyun;Kim, Jun-Sik;Park, Shi-Hong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.04b
    • /
    • pp.27-28
    • /
    • 2009
  • This paper suggests a autonomous linear Li-ion battery charger which can safely distribute power between an external power source(AC adapter, auto adapter, or USB source), battery, and the system load. Depending on an external power source's capability, the charger selects proper charging-mode automatically. The charger IC designed and fabricated on Dongbu HITEC's $0.35{\mu}m$ BCD process with layers of one poly and three metals.

  • PDF

The Effect of Plasticizer and Zeolite Addition on the Interface between Polymer Electrolyte Based on Poly(ethylene oxide) and Li Electrode. (이온전도성 Poly(ethylene oxide) 고분자 전해질과 Li과의 계면에 미치는 가소제 및 Zeolite의 첨가효과)

  • Kim, J.U.;Gu, H.B.;Jin, B.S.;Moon, S.I.;Yun, M.S.
    • Proceedings of the KIEE Conference
    • /
    • 1994.11a
    • /
    • pp.205-208
    • /
    • 1994
  • The purpose of this study is to research and develop solid polymer electrolyte(SPE) for Li secondary battery. PEO-$LiClO_4$ electrolyte with plasticizer is very unstable. Passivation phenomena in polymer electrolyte cell was described by the SPL model. The time dependance of the impedance indicates that a passivation layer grows rapidly on the Li surface. However, the growing of passivation layer on the Li surface can be restrained by addition of zeolite to the PEO electrolyte. It suggested that addition of zeoliteto to the PEO-$LiClO_4$ electrolyte effectively controls the formation of a passivation layer on Li electrode.

  • PDF

A Novel Model of a Li-ion Battery Based on the Manufacturer's Datasheet

  • Zhang, Xiaoqiang;Zhang, Weiping;Zhang, Mao
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.5
    • /
    • pp.237-245
    • /
    • 2017
  • A novel battery model based on the manufacturer datasheet is proposed. According to this model, not only the steady state but also the dynamic charging performance of the Li-ion battery can be analyzed and evaluated. The major advantage of our model is that all the parameters can be directly obtained from the datasheet and no additional experiments are required. Moreover, the transition between charge and discharge stages was analyzed based on our model, and a novel Simulink module was built to predict the energy consumption of a battery-powered system. Experiments were carried out to verify the model accuracy. Although the new model was developed for the Li-ion battery, it is expected to be applicable to other batteries.

Analysis of Micro-grid Operations Including PV Source and Li Battery (태양광 전원과 Li 배터리를 포함하는 마이크로 그리드의 운영특성 해석)

  • Kim, Deok Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.7
    • /
    • pp.4692-4697
    • /
    • 2014
  • A micro-grid including photovoltaic source and Li battery has been installed and operated for several years at the campus of USF and been used as a test bed. Photovoltaic power source has been strongly influenced by the location, weather and climate of the installed area. To compensate for the uncertainty of photovoltaic source's power output, a Li battery is connected directly to the photovoltaic source and supplies electric power to the grid. The Li battery is operated to supply power output to the grid according to the charging or discharging mode of the battery based on the average power output of the photovoltaic source, which is calculated from the monitored data for several years. The grid of the photovoltaic and Li battery system is operated as a severe loading condition and the operating characteristics of PV source and Li battery cells are analyzed in detail.