• Title/Summary/Keyword: Li-Mn spinel

Search Result 120, Processing Time 0.025 seconds

Variation of Li Diffusion Coefficient during Delithiation of Spinel LiNi0.5Mn1.5O4

  • Rahim, Ahmad Syahmi Abdul;Kufian, Mohd Zieauddin;Arof, Abdul Kariem Mohd;Osman, Zurina
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.1
    • /
    • pp.128-137
    • /
    • 2022
  • For this study, the sol gel method was used to synthesize the spinel LiNi0.5Mn1.5O4 (LNMO) electrode material. Structural, morphological, electrochemical, and kinetic aspects of the LNMO have been characterized. The synthesized LNMO was indexed with the Fd3m cubic space group. The excellent capacity retention indicates that the spinel framework of LNMO has the ability to withstand high rate charge-discharge throughout long cycle tests. The Li diffusion coefficient (DLi) changes non-monotonically across three orders of magnitude, from 10-9 to 10-12 cm2 s-1 determined from GITT method. The variation of DLi seemed to be related to three oxidation reactions that happened throughout the charging process. A small dip in DLi at the beginning stage of Li deintercalation is correlated with the oxidation of Mn3+ to Mn4+. While two pronounced DLi minima at 4.7 V and 4.75 V are due to the oxidation of Ni2+/Ni3+ and Ni3+/Ni4+ respectively. The depletion of DLi at the high voltage region is attributed to the occurrence of two successive phase transformation phenomena.

Electrochemical properties of $LiCr_xMn_{1-x}O_2$ cathode materials for lithium ion battery (리튬 이온 이차전지용 $LiCr_xMn_{1-x}O_2$ 정극활물질의 전기 화학적 특성)

  • Jin, En-Mei;Jeon, Yeon-Su;Beak, Hyoung-Ryoul;Gu, Hal-Bon;Son, Myung-Mo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.418-419
    • /
    • 2005
  • $\o-LiMnO_2$ is known to have poor cycle performance causing the irreversible phase transformation on cycling. In this paper, the effect of chemical substitution on improving cycle performance of $o-LiMnO_2$ was studied at the compositions of $LiCr_xMn_{1-x}O_2$(x=0, 0.1, 0.2, 0.4). XRD is showed that structure of $LiCr_xMn_{1-x}O_2$ transformed from orthorhombic to spinel according to the increase of substitute degree. For lithium ion battery applications, $LiCr_xMn_{1-x}O_2$/Li cell were characterized electrochemically by charge/discharge cycling.

  • PDF

Stabilization of LiMn2O4 Electrode for Lithium Secondary Battery(I) - Electrode Characteristics on the Substitution of Metal Oxides in LiMn2O4 Cathode Material - (리튬이차전지용 정극활물질 LiMn2O4의 안정화(I) - LiMn2O4에 대한 금속산화물의 치환에 따른 전극 특성 -)

  • Lee, Jin-Sik;Lee, Chul-Tae
    • Applied Chemistry for Engineering
    • /
    • v.9 no.5
    • /
    • pp.774-780
    • /
    • 1998
  • For the stabilization of the spinel structured $LiMn_2O_4$, a fraction of manganese was substituted with various metals such as Mg, Fe, V, W, Cr, Mo with Mn that had a similar ionic radii ($LiM_xMn_{2-x}O_4(0.05{\leq}x{\leq}0.02)$). The $LiM_xMn_{2-x}O_4$ showed a substantial improvement as lower capacity loss than that of the spinel structured $LiMn_2O_4$ when it was used as a cathode material. And with the partial substitution, the chemical diffusion coefficient for $LiMg_{0.05}Mn_{1.9}O_4$ and $LiCr_{0.1}Mn_{1.9}O_4$ was increased by and order of magnitude compared to that of the $LiMn_2O_4$ with spinel structure. The results showed that significant improvement can be made on the electrochemical characteristics as the structure of the $LiMn_2O_4$ electrode material was stabilized by the partial substitution.

  • PDF

Phase Transitions of $LiMn_2O_4$ on $CO_2$ Decomposition (($CO_2$ 분해시 $LiMn_2O_4$의 상변화)

  • Kwoen, Tae-Hwan;Yang, Chun-Mo;Park, Young-Goo;Cho, Young-Koo;Rim, Byung-O
    • Journal of the Korean Applied Science and Technology
    • /
    • v.20 no.1
    • /
    • pp.33-43
    • /
    • 2003
  • $LiMn_2O_4$ catalyst for $CO_2$ decomposition was synthesized by oxidation method for 30 min at 600$^{\circ}C$ in an electric furnace under air condition using manganese(II) nitrate $(Mn(NO_3)_2{\cdot}6H_2O)$, Lithium nitrate ($LiNO_3$) and Urea $(CO(NH_2)_2)$. The synthesized catalyst was reduced by $H_2$ at various temperatures for 3 hr. The reduction degree of the reduced catalysts were measured using the TGA. And then $CO_2$ decomposition rate was measured using the reduced catalysts. Phase-transitions of the catalysts were observed after $CO_2$ decomposition reaction at an optimal decomposition temperature. As the result of X-ray powder diffraction analysis, the synthesized catalyst was confirmed that the catalyst has the spinel structure, and also confirmed that when it was reduced by $H_2$, the phase of $LiMn_2O_4$ catalyst was transformed into $Li_2MnO_3$ and $Li_{1-2{\delta}}Mn_{2-{\delta}}O_{4-3{\delta}-{\delta}'}$ of tetragonal spinel phase. After $CO_2$ decomposition reaction, it was confirmed that the peak of $LiMn_2O_4$ of spinel phase. The optimal reduction temperature of the catalyst with $H_2$ was confirmed to be 450$^{\circ}C$(maximum weight-increasing ratio 9.47%) in the case of $LiMn_2O_4$ through the TGA analysis. Decomposition rate(%) using the $LiMn_2O_4$ catalyst showed the 67%. The crystal structure of the synthesized $LiMn_2O_4$ observed with a scanning electron microscope(SEM) shows cubic form. After reduction, $LiMn_2O_4$ catalyst became condensed each other to form interface. It was confirmed that after $CO_2$ decomposition, crystal structure of $LiMn_2O_4$ catalyst showed that its particle grew up more than that of reduction. Phase-transition by reduction and $CO_2$ decomposition ; $Li_2MnO_3$ and $Li_{1-2{\delta}}Mn_{2-{\delta}}O_{4-3{\delta}-{\delta}'}$ of tetragonal spinel phase at the first time of $CO_2$ decomposition appear like the same as the above contents. Phase-transition at $2{\sim}5$ time ; $Li_2MnO_3$ and $Li_{1-2{\delta}}Mn_{2-{\delta}}O_{4-3{\delta}-{\delta}'}$ of tetragonal spinel phase by reduction and $LiMn_2O_4$ of spinel phase after $CO_2$ decomposition appear like the same as the first time case. The result of the TGA analysis by catalyst reduction ; The first time, weight of reduced catalyst increased by 9.47%, for 2${\sim}$5 times, weight of reduced catalyst increased by average 2.3% But, in any time, there is little difference in the decomposition ratio of $CO_2$. That is to say, at the first time, it showed 67% in $CO_2$ decomposition rate and after 5 times reaction of $CO_2$ decomposition, it showed 67% nearly the same as the first time.

The Effect of Reaction Temperature for Synthesis of LiMn2O4 by Calcination Process and the Electrochemical Characteristics (소성법에 의한 LiMn2O4의 제조시 반응 온도의 영향과 전기화학적 특성)

  • Lee, Chul-Tae;Lee, Jin-Sik;Kim, Hyun-Joong
    • Applied Chemistry for Engineering
    • /
    • v.9 no.2
    • /
    • pp.220-225
    • /
    • 1998
  • The spinel structured $LiMn_2O_4$ was prepared from $Li_2CO_3$ and $MnO_2$ by calcination at various temperatures in the range of $750{\sim}900^{\circ}C$. It was found that the most suitable cubic structure of $LiMn_2O_4$ was obtained by heating at $850^{\circ}C$ for 12 hrs. However, in the calcination at $900^{\circ}C$, $Mn^{4+}$ of 0.06M was changed to $Mn^{+3}$ by the oxygen loss, so that it has been shown that the formula has changed to $LiMn_2O_{3.97}$. This phenomena were in agreement with the Jahn-Teller distortion by the increment of $Mn^{+3}$ ion on the octahedral sites of the spinel structured $LiMn_2O_4$. The results showed that after 15 charge/discharge cycles in the voltage range from 3.5V to 4.3V versus Li/$Li^+$ with a current density of $0.25mA/cm^2$, the spinel structured $LiMn_2O_4$ that was prepared at $900^{\circ}C$ showed a lower discharge capacity, 82~50 mAh/g, while the $LiMn_2O_4$, prepared at $850^{\circ}C$, showed the discharge capacity of 102~64 mAh/g.

  • PDF

Charge-discharge capacity and AC impedance of $LiMn_{2-y}M_{y}O_{4}$(M=Mg, Zn) cathode ($LiMn_{2-y}M_{y}O_{4}$(M=Mg, Zn) 정극의 충방전 용량 및 AC 임피던스 특성)

  • 정인성;위성동;이승우;구할본
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.455-458
    • /
    • 2001
  • Spinel $LiMn_{2-y}$$M_{y}$ $O_4$powder was prepared solid-state method by calcining the mixture of LiOH - $H_2O$, Mn $O_2$, ZnO and MgO at 80$0^{\circ}C$ for 36h. To investigate the effect of substitution with Mg, Zn cation, charge-discharge experiments and initial impedance spectroscopy performed. The structure of $LiMn_{2-y}$$M_{y}$ $O_4$crystallites was analyzed from powder X-ray diffraction data as a cubic spinel, space group Fd3m. all cathode material showed spinel phase based on cubic phase in X-ray diffraction. Ununiform which calculated by (111) face and (222) face was constant in spite of the change of y value, except PUf\ulcorner LiM $n_2$ $O_4$. The discharge capacities of the cathode for the cation subbstitUtes $LiMn_{2-y}$$M_{y}$ $O_4$/Li cell at the 1st cycle and at the 40th cycle were about 120~124 and 108~112mAh/g except LiM $n_{1.9}$Z $n_{0.1}$ $O_4$/Li cell, respectively. This cell capacity is retained by 93% after 40th cycle. AC impedance of $LiMn_{2-y}$$M_{y}$ $O_4$/Li cells revealed the similar resistance of about 65~110$\Omega$ before cycling. before cycling.g.g.

  • PDF

The relation of the crystal phase and the charge/discharge capacity of $Li[Li_yMn_{2-y}]O_4$ cathode materials substituted Li (Li 치환된 $Li[Li_yMn_{2-y}]O_4$ 정극 활물질의 결정 구조와 충방전 용량과의 관계)

  • Jeong, In-Seong;Gu, Hal-Bon;Park, Bok-Gi;Son, Myeng-Mo;Lee, Heon-Su
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.04b
    • /
    • pp.117-120
    • /
    • 2000
  • The relation of crystal phase and charge/discharge capacity of $Li[Li_yMn_{2-y}]O_4$ were studied for different degrees of Li substitution (y). All cathode material showed spinel phase based on cubic phase in X-ray diffraction. Other peaks didn't show in spite of the increase of y value in $Li[Li_yMn_{2-y}]O_4$. Ununiform of $Li[Li_yMn_{2-y}]O_4$ which calcinated by (111) face and (222) face was more stable than that of pure $LiMn_2O_4$. In addition, At TG analysis, calcined $Li[Li_{0.1}Mn_{1.9}]O_4$ exhibited much mass loss at $800{\mu}m$. The cycle performance of the $Li(Li_yMn_{2-y}]O_4$ was improved by the substitution of $Li^{1+}$ for $Mn^{3+}$ in the octahedral sites. Specially, $Li[Li_{0.08}Mn_{1.92}]O_4$ and $Li[Li_{0.1}Mn_{1.9}]O_4$ cathode materials showed the charge and discharge capacity of about 125mAh/g at first cycle, and about 95mAh/g after 70th cycle. It is excellent than that of pure $LiMn_2O_4$, which 125mAh/g at first cycle, 65mAh/g at 70th.

  • PDF

Surface-Modified Spinel LiNi0.5Mn1.5O4 for Li-Ion Batteries

  • Kim, Jongsoon;Kim, Hyungsub;Kang, Kisuk
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.1
    • /
    • pp.21-35
    • /
    • 2018
  • Spinel $LiNi_{0.5}Mn_{1.5}O_4$ has received great attention as one of the most outstanding cathode materials for Li-ion batteries (LIBs) because of its high energy density resulting from the operating voltage of ~ 4.7 V (vs. $Li^+/Li$) based on the $Ni^{2+}/Ni^{4+}$ redox reaction. However, $LiNi_{0.5}Mn_{1.5}O_4$ is known to suffer from undesirable side reactions with the electrolyte at high voltage as well as Mn dissolution from the structure. These issues prevent the realization of the optimal electrochemical performance of $LiNi_{0.5}Mn_{1.5}O_4$. Extensive research has been conducted to overcome these issues. This review presents an overview of the various surface-modification methods available to improve the electrochemical properties of $LiNi_{0.5}Mn_{1.5}O_4$ and provides perspectives on further research aimed at the application of $LiNi_{0.5}Mn_{1.5}O_4$ as a cathode material in commercialized LIBs.

Morphology and Characteristic change of $LiMn_2O_4$ Powder Prepared by Precipitation-Evaporation Method (침전-증발법에 의해 제조된 $LiMn_2O_4$ 분말의 특성과 형태 변화)

  • Kim, Guk-Tae;Shim, Young-Jae
    • Korean Journal of Crystallography
    • /
    • v.15 no.1
    • /
    • pp.44-50
    • /
    • 2004
  • Spinel structured lithium managanese oxide $(LiMn_2O_4)$ powder with well defined facetted morphology was prepared by precipitation-evaporation method. {111}, {110}, and {100} planes are mainly observed in the $LiMn_2O_4$ powder. And powder shape of tetradecahedron and octahedron was observed depending on the calcinations temperature. The observed powder morphology observed seemed to be related to the nonstoichiometry of the oxygen in the $LiMn_2O_4$ spinel structure. Oxygen nonstoichiometry might be responsible for the Jahn-teller effect and structure transition which in turn affects the surface energy of the {111}, {110}, and {100} planes. Powder shape transition from tetradecahedron to octahedron seemed to be related to the surface energy of the {111}, {110}, and {100} planes with oxygen nonstoichiometry.