• 제목/요약/키워드: Li-Ion Polymer Battery

검색결과 79건 처리시간 0.023초

고출력/저온 방전을 위한 리튬전지와 슈퍼캐패시터 하이브리드 셀의 방전 거동 특성 연구 (Performance Characteristics of Li-ion Battery and Supercapacitor Hybrid Cell for High Power / Low Temperature Discharge)

  • 장우진;홍승철;홍정표;황태선;오준석;고성연;이가은;안균영;김현수;서종환;남재도
    • 한국자동차공학회논문집
    • /
    • 제21권6호
    • /
    • pp.49-57
    • /
    • 2013
  • In this study, we fabricated a parallelly connected Li-ion battery/supercapacitor hybrid cell to combine the advantageous characteristics of Li-ion battery and supercapacitor, high energy density and high power density, respectively, and investigated its discharging characteristics over a wide temperature range from -40 to $25^{\circ}C$. At the initial state of discharging of the hybrid cell, the power was mostly provided by the supercapacitor and then the portion of the Li-ion battery was gradually increased. By installing a switching system into the hybrid cell, which controls the discharging sequence of Li-ion battery and supercapacitor, the maximum power was improved by 40% compared with non switching system. In addition at low temperatures, the power and discharging time of the hybrid cell were significantly enhanced compared to a battery-alone system. The hybrid cell is expected to be applied in electric vehicles and small domestic appliances that require high power at initial discharging state.

The Prospect and Future of Li-ion Battery

  • Lee, Sung-Joon;Jeong, Seung-Hwan;You, Chung-Yeol;Soh, Dea-Wha;Hong, Sang-Jeen
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2005년도 하계학술대회 논문집 Vol.6
    • /
    • pp.627-628
    • /
    • 2005
  • In recent years, the rapid growth of portable electronic device market requires higher density characteristics of batteries. The speed at which portability and mobility is advancing hinges much on the battery. What is important is this energy source that engineers design handled devices around the battery, rather than the other way around. Much improvement has been made in reducing the power consumption of portable devices. Currently, the most popular secondary battery is Li-ion battery. Li-ion has won the limelight and become the most prominent battery. This paper reviews the prospect and future of the Li-ion battery.

  • PDF

리튬이온 2차전지용 분리막 (Separators far Li-Ion Secondary Batteries)

  • 남상용;이영무;이창현;박호범;임지원;하성용;강종석
    • 멤브레인
    • /
    • 제14권4호
    • /
    • pp.263-274
    • /
    • 2004
  • 고분자 분리막 기술은 리튬이온전지나 리튬폴리머전지와 같은 리튬이차전지의 성능을 좌우할 정도로 중요한 요소기술이다. 본 논문에서는 지금까지 개발되어 사용되고 있는 다양한 고분자 분리막의 특징 및 기술동향에 대하여 기술하고, 보다 적합한 분리막의 요건을 만족시키기 위한 고분자물질의 판단기준을, 특히 안정성 측면에서 살펴보고자 한다. 또한 실제 리튬이온전지용 분리막을 제조하기 위한 제조공정을 통해 고분자재질의 특징과 관련한 적용성의 여부를 판단코자 하며, 제조된 분리막에 대한 실용화 가능성을 판단하기 위한 분리막의 물리적 요구치 및 측정법에 대하여 기술코자 한다.

Polyurethane기 겔폴리머전해질을 이용한 Advanced Lithium-Ion Battery에 관한 연구 (A Study on Advanced Lithium-Ion Battery with Polyurethane-Based Gel Polymer Electrolyte)

  • 김현수;문성인;윤문수;김상필
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 하계학술대회 논문집
    • /
    • pp.252-254
    • /
    • 2002
  • In this study, polyurethane acrylate macromer was synthesized and it was used in a gel polymer electrolyte, and then its electrochemical performances were evaluated. LiCoO$_2$/GPE/MCF cells were also prepared and their performances depending on discharge currents and temperatures were evaluated. ionic conductivity of the gel polymer electrolyte with PUA at room temperature and -20$^{\circ}C$ was ca. 4.5 x 10$\^$-3/ S/cm and 1.7${\times}$10$\^$-3/ S/cm, respectively. GPE was stable electrochemically up to 4.5 V vs. Li/Li$\^$+/. LiCoO$_2$/GPE/MCF cell showed a good high-rate and a low-temperature performance.

  • PDF

Semi-interpenetrating Solid Polymer Electrolyte for LiCoO2-based Lithium Polymer Batteries Operated at Room Temperature

  • Nguyen, Tien Manh;Suk, Jungdon;Kang, Yongku
    • Journal of Electrochemical Science and Technology
    • /
    • 제10권2호
    • /
    • pp.250-255
    • /
    • 2019
  • Poly(ethylene oxide) (PEO)-based solid polymer electrolytes (SPEs) show promise for improving the lithium ion battery safety. However, due to oxidation of the PEO group and corrosion of the Al current collector, PEO-based SPEs have not previously been effective for use in $LiCoO_2$ (LCO) cathode materials at room temperature. In this paper, a semi-interpenetrating polymer network (semi-IPN) PEO-based SPE was applied to examine the performance of a LCO/SPE/Li metal cell at different voltage ranges. The results indicate that the SPE can be applied to LCO-based lithium polymer batteries with high electrochemical performance. By using a carbon-coated aluminum current collector, the Al corrosion was mostly suppressed during cycling, resulting in improvement of the cell cycle stability.

리튬 이온 폴리머 전지용 Tin oxide-flyash Composite 전극의 전기화학적 특성 (Electrochemical Properties of Tin oxide-flyash Composite for Lithium Ion Polymer Battery)

  • 김종욱;구할본
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 춘계학술대회 논문집 센서 박막재료 반도체 세라믹
    • /
    • pp.88-90
    • /
    • 2003
  • The purpose of this study is to research and develop tin oxide-flash composite for lithium Ion polymer battery. Tin oxide is one of the promising material as a electrode active material for lithium Ion polymer battery (LIPB). Tin-based oxides have theoretical volumetric and gravimetric capacities that are four and two times that of carbon, respectively. We investigated cyclic voltammetry and charge/discharge cycling of SnO-flyash/SPE/Li cells. The first discharge capacity of SnO-flyash composite anode was 720 mAh/g. The discharge capacity of SnO-flyash composite anode 412 and 314 mAh/g at cycle 2 and 10 at room temperature, respectively. The SnO-flyash composite anode with PVDF-PMMA-PC-EC-$LiClO_4$ electrolyte showed good capacity with cycling.

  • PDF

리튬이온 및 리튬폴리머 배터리의 폭발과 화재 위험성에 관한 연구 (A Study on Explosion and Fire Risk of Lithium-Ion and Lithium-Polymer Battery)

  • 이범주;최경주;이상호;정연만;박영;조동욱
    • 한국통신학회논문지
    • /
    • 제42권4호
    • /
    • pp.855-863
    • /
    • 2017
  • 리튬 이온 및 리튬 폴리머 배터리는 체적 에너지 저장 밀도가 높아 전자담배, 스마트폰, 전기자전거, 드론, 보조배터리 등과 같은 다양한 전자기기에 사용되며 심지어 골프카트 및 전기자동차에도 사용되고 있다. 그러나 최근 리튬 배터리를 사용하는 다양한 전자기기에서 충전 중 배터리 폭발현상이 빈번히 발생하고 있으며 폭발로 인하여 화재 및 신체 위해가 발생하고 있어 그 심각성이 대두되고 있다. 이를 위해 본 논문에서는 이러한 리튬 배터리의 작동 원리를 알아보고, 재현실험을 통하여 폭발 원인을 검증해 보았으며 이를 통하여 화재감식 기법 개발과 안전대책을 수립하기 위한 연구를 진행하였다.

PMMA IPN계 겔폴리머전해질을 채용한 리튬이온폴리머전지의 전기화학적 특성 (Electrochemical Properties of Lithium-Ion Polymer Battery with PMMA IPN-Based Gel Polymer Electrolyte)

  • 김현수;신정한;나성환;엄승욱;문성인;김상필
    • 한국전기전자재료학회논문지
    • /
    • 제16권11호
    • /
    • pp.994-1000
    • /
    • 2003
  • In this study, gel polymer electrolytes (GPE) with semi-interpenerating network of poly (methyl methacrylate) and hexanediol dimethacrylate were synthesized and their electrochemical performances were evaluated. LiCoO$_2$/GPE/graphite cells were prepared and their performances depending on discharge currents and temperatures were evaluated. The precursor containing 5 vol% curable mixture had a low viscosity relatively. GPE showed good electrochemical stability up to potential of 4.8 V vs. Li/Li$\^$+/. Ionic conductivity of the gel polymer electrolyte at room temperature and -20$^{\circ}C$ was ca. 5.9 and 1.4${\times}$10$\^$-3/ Scm$\^$-1/, respectively. LiCoO$_2$/GPE/graphite cells showed good rate capability, low-temperature performance and cycleability.

Electric Model of Li-Ion Polymer Battery for Motor Driving Circuit in Hybrid Electric Vehicle

  • Lee, June-Sang;Lee, Jae-Joong;Kim, Mi-Ro;Park, In-Jun;Kim, Jung-Gu;Lee, Ki-Sik;Nah, Wan-Soo
    • Journal of Electrical Engineering and Technology
    • /
    • 제7권6호
    • /
    • pp.932-939
    • /
    • 2012
  • This paper presents an equivalent circuit model of a LIPB (Li-Ion Polymer battery) for Hybrid Electric Vehicles (HEVs). The proposed equivalent circuit can be used to predict the charging/discharging characteristics in time domain as well as the impedance characteristic analysis in frequency domain. Based on these features, a one-cell model is established as a function of Depth of Discharge (DoD), and a 48-cell model for a battery pack was also established. It was confirmed by experiment that the proposed model predict the discharging and impedance (AC) characteristics quite accurately at different constant current levels. To check the usefulness of the proposed circuit, the model was used to simulate a motor driving circuit with an Insulated Gate Bipolar Transistor (IGBT) inverter and Brushless DC (BLDC) motor, and it is confirmed that the model can calculate the battery voltage fluctuation in time domain at different DoDs.

Polyoxyalkylene Glycol Acrylate기 Gel Polymer Electrolyte를 적용한 리튬이온폴리머전지의 전기화학적 특성 (Electrochemical Performances of Lithium-ion Polymer Battery with Polyoxyalkylene Glycol Acrylate-based Gel Polymer Electrolyte)

  • 김현수;김성일;나성환;문성인
    • 한국전기전자재료학회논문지
    • /
    • 제18권2호
    • /
    • pp.142-147
    • /
    • 2005
  • In this work, a gel polymer electrolyte (GPE) was prepared using polyoxyalkylene glycol acrylate (POAGA) as a macromonomer LiCoO$_2$/GPE/graphite cells were prepared and their electrochemical properties were evaluated at various current densities and temperatures. The ionic conductivity of the GPE was more than 6.2${\times}$10$^{-3}$ S$.$$cm^{-1}$ / at room temperature. The GPE had good electrochemical stability up to 4.5 V vs. Li/Li$^{+}$. POAGA-based cells were showed good electrochemical performances such as rate capability, low-temperature performance, and cycleability. The cells, also, passed a safety test such as the overcharge and nail-penetration test.t.