• Title/Summary/Keyword: Li-Ion

Search Result 1,315, Processing Time 0.025 seconds

Electrochemical Properties of 0.3Li2MnO3·0.7LiMn0.55Ni0.30Co0.15O2 Electrode Containing VGCF for Lithium Ion Battery

  • Kim, Jeong-Min;Jeong, Minchan;Jin, Bong-Soo;Kim, Hyun-Soo
    • Journal of Electrochemical Science and Technology
    • /
    • v.5 no.1
    • /
    • pp.32-36
    • /
    • 2014
  • The $0.3Li_2MnO_3{\cdot}0.7LiMn_{0.55}Ni_{0.30}Co_{0.15}O_2$ cathode material was prepared via a co-precipitation method. The vapor grown carbon fiber (VGCF) was used as a conductive material and its effects on electrochemical properties of the $0.3Li_2MnO_3{\cdot}0.7LiMn_{0.55}Ni_{0.30}Co_{0.15}O_2$ cathode material were investigated. From the XRD pattern, the typical complex layered structure was confirmed and a solid solution between $Li_2MnO_3$ and $LiMO_2$ (M = Ni, Co and Mn) was formed without any secondary phases. The VGCF was properly distributed between cathode materials and conductive sources by a FE-SEM. In voltage profiles, the electrode with VGCF showed higher discharge capacity than the pristine electrode. At a 5C rate, 146 mAh/g was obtained compared with 232 mAh/g at initial discharge in the electrode with VGCF. Furthermore, the impedance of the electrode with VGCF did not changed much around $9-10{\Omega}$ while the pristine electrode increased from 21.5${\Omega}$ to $46.3{\Omega}$ after the $30^{th}$ charge/discharge cycling.

Degradation of thin carbon-backed lithium fluoride targets bombarded by 68 MeV 17O beams

  • Y.H. Kim;B. Davids;M. Williams;K.H. Hudson;S. Upadhyayula;M. Alcorta;P. Machule;N.E. Esker;C.J. Griffin;J. Williams;D. Yates;A. Lennarz;C. Angus;G. Hackman;D.G. Kim;J. Son;J. Park;K. Pak;Y.K. Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.3
    • /
    • pp.919-926
    • /
    • 2023
  • To analyze the cause of the destruction of thin, carbon-backed lithium fluoride targets during a measurement of the fusion of 7Li and 17O, we estimate theoretically the lifetimes of carbon and LiF films due to sputtering, thermal evaporation, and lattice damage and compare them with the lifetime observed in the experiment. Sputtering yields and thermal evaporation rates in carbon and LiF films are too low to play significant roles in the destruction of the targets. We estimate the lifetime of the target due to lattice damage of the carbon backing and the LiF film using a previously reported model. In the experiment, elastically scattered target and beam ions were detected by surface silicon barrier (SSB) detectors so that the product of the beam flux and the target density could be monitored during the experiment. The areas of the targets exposed to different beam intensities and fluences were degraded and then perforated, forming holes with a diameter around the beam spot size. Overall, the target thickness tends to decrease linearly as a function of the beam fluence. However, the thickness also exhibits an increasing interval after SSB counts per beam ion decreases linearly, extending the target lifetime. The lifetime of thin LiF film as determined by lattice damage is calculated for the first time using a lattice damage model, and the calculated lifetime agrees well with the observed target lifetime during the experiment. In experiments using a thin LiF target to induce nuclear reactions, this study suggests methods to predict the lifetime of the LiF film and arrange the experimental plan for maximum efficiency.

Phase Evolution in LiMO2(M=Co,Ni) Cathode Materials for Secondary Lithium Ion Batteries : Effect of Temperature and Oxygen Partial Pressure (리튬 2차 전지용 양극활물질 LiMO2(M=Co,Ni)의 온도와 산소 분압에 따른 상전이 거동)

  • Huang, Cheng-Zhu;Kim, Ho-Jin;Jeong, Yeon-Uk;Lee, Joon-Hyung;Kim, Jeong-Joo
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.4
    • /
    • pp.292-297
    • /
    • 2005
  • $LiMO_{2}(M=Co,Ni)$ samples were synthesized with $Li_{2}CO_{3},\;Co_{3}O_{4}$, and NiO by the solid-state reaction method. In the case of $LiCoO_{2}$, at low temperature$(T=400^{\circ}C)$ spinel structure was synthesized and the obtained spinel phase was transformed to layered phase at high temperature$(T\ge600^{\circ}C)$. The phase transition behaviors of $LiCoO_{2}$ were investigated with various heating temperature and time. The rate of transition was directly proportional to the concentrations of reactant, and activation energy of reaction was around 6.76 kcal/mol. When CoO(rock salt structure) was used as a starting material instead of $Co_{3}O_{4}$(spinel structure), layered structure of $LiCoO_{2}$ was obtained at low temperature. In the case of $LiNiO_{2}$ the transition from layered structure to rock salt structure occurred easily by disordering/ordering reaction, but did not occur in $LiCoO_{2}$. The difference in metal ion radii in $LiCoO_{2}$ and $LiNiO_{2}$ results in different behaviors of phase transitions.

Synthesis of orthorhombic $LiMnO_2$ and its electrochemical properties

  • Kim, Jung-Min;Chung, Hoon-Taek
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.15 no.2
    • /
    • pp.51-56
    • /
    • 2005
  • We prepared orthorhombic $LiMnO_2$ by emulsion drying method. The thermo-gravimetric measurement and X-ray diffraction studies indicated that the orthorhombic $LiMnO_2$ phase was formed above $800^{\circ}C$ by oxygen evaporation process from $LiMn_2O_4$ and $Li_2MnO_3$. In this process, we could control the ordering of $LiMnO_2$ with heating rate. It was observed that electrochemical properties depended on the ordering of this material; the ordered one exhibited good capacity retention, whereas the disordered one suffered capacity fading upon cycling, especially in the 3 V region. Transmission electron microscopic (TEM) study showed that this difference is related with difference in the stress relieving effects in the samples.

Lithium-ion Battery Energy Storage System for Power Quality Improvement in Electrical Propulsion Ships (전기추진선박의 전력품질 개선을 위한 리튬-이온 배터리 에너지저장시스템 적용)

  • Ku, Hyun-Keun;Seo, Hye-Rim;Kim, Jang-Mok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.4
    • /
    • pp.351-355
    • /
    • 2015
  • This paper explained the application of a lithium-ion battery energy storage system to electric propulsion ships. The power distribution in electric propulsion ships has low power quality because of the variation in the power consumption of the propulsion motor. For proper operation of the ship, the power quality needs to be improved, and the battery energy storage system is used to solve power-quality problems. The simulation models of electric propulsion ship and battery energy storage systems are constructed on MATLAB/Simulink to verify the improvement in power quality. The proposed system is applied in various scenarios of the propulsion motor state. The power quality achieved by using the battery energy storage system in both voltage and frequency satisfies the standards set by IEC-60092/101.

The electrochemical Characteristics on the Anode Material of Lithium Ion Secondary Batteries with Discharge Voltage (방전전압에 따른 리튬 이온 2차전지용 음극물질의 전기화학적 특성)

  • Park, Jong-Gwang;Han, Tae-Hui;Jeong, Dong-Cheol;Im, Seong-Hun;Han, Byeong-Seong
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.6
    • /
    • pp.328-334
    • /
    • 2000
  • A lithium ion secondary battery using carbon as a negative electrode has been developed. Further improvements to increase the cell capacity are expected by modifying the structure of the carbonaceous material. There are hopes for the development of large capacity lithium ion secondary batteries with long cycle, high energy density, high power density, and high energy efficiency. In the present paper, needle cokes from petroleum were examined as an anode of lithium ion secondary battery. Petroleum cokes, MCL(Molten Caustic Leaching) treated in Korea Institute Energy Research, were carbonized at various temperatures of 0, 500, 700, $19700^{\circ}C$ at heating rate of $2^{\circ}C$/min for lh. The electrolyte was used lM liPF6 EC/DEC (1:1). The voltage range of charge & discharge was 0.0V(0.05V) ~ 2.0V. The treated petroleum coke at $700^{\circ}C$ had an initial capacity over 560mAh.g which beyond the theoretical maximum capacity, 372mAh/g for LiC6. This phenomena suggests that carbon materials with disordered structure had higher cell capacity than that the graphitic carbon materials.

  • PDF