• Title/Summary/Keyword: Li salt

Search Result 406, Processing Time 0.034 seconds

Reductive reaction of U and Lanthanides using Cd-Li metal in LiCl-KCl Molten Salt (LiCl-KCl 용융염에서 Cd-Li 금속을 이용한 U 및 란탄족의 환원반응)

  • 우문식;이병직;김응호;유재형
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2004.06a
    • /
    • pp.339-339
    • /
    • 2004
  • 원자로를 이용하여 장수명핵종(long lived nucleus)을 소멸처리하는 과정에서 초우라늄(TRU, transuranium)과 희토류(RE, rare earth) 금속에 포함되어 있는 소량의 핵분열성(fissile) 물질인 우라늄을 제거할 필요가 있다. 본 실험은 LiCl-KCl 용융염계에서 전해제련법(Electrowinning)을 이용하여 용융염욕에 존재하는 우라늄을 제거하기 위하여 필요한 Cd-Li 양전극 물질을 제조하였고, 제조된 금속을 이용하여 우라늄 및 란탄족(Dy, Ce, Y, Nd, Gd) 금속의 환원 특성을 파악하였다.(중략)

  • PDF

Fundamental Study on a Distillation Separation of a LiCl-KCl Eutectic Salt from Rare Earth Precipitates (희토류 침전물로부터 LiCl-KCl 공융염의 증류 분리에 관한 기초연구)

  • Yang, Hee-Chul;Eun, Hee-Chul;Kim, In-Tae
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.8 no.1
    • /
    • pp.65-70
    • /
    • 2010
  • The distillation rate on LiCl-KCl eutectic salt under different vacuums from 0.5-50 mmHg was first investigated by using both a non-isothermal and a isothermal thermogravimetric (TG) analysis. Based on the non-isothermal TG data, distillation rate equations as a function of the temperature could be derived. Calculated flux by these model flux equations was in agreement with the distillation rate obtained from isothermal TG analysis. A distillation rate of $10^{-4}-10^{-5}$ mole $cm^{-2}sec^{-1}$ is obtainable at temperatures less than 1300K and vacuums of 0.5-50 mmHg. About a 99% salt distillation efficiency was obtained after an hour at a temperature above 1150 K under 50 mmHg in a small scale distillation test system. An increase in the vaporizing surface area is relatively effective for removing residual salt in the remaining particles, when compared to that for the vaporizing time. Over 99.95% of total distillation efficiency was obtained for a 1-h distillation operation by increasing the inner surface area from $4.52cm^2$ to $12.56cm^2$.

SEPARATION OF STRONTIUM AND CESIUM FROM TERNARY AND QUATERNARY LITHIUM CHLORIDE-POTASSIUM CHLORIDE SALTS VIA MELT CRYSTALLIZATION

  • WILLIAMS, AMMON N.;PACK, MICHAEL;PHONGIKAROON, SUPATHORN
    • Nuclear Engineering and Technology
    • /
    • v.47 no.7
    • /
    • pp.867-874
    • /
    • 2015
  • Separation of cesium chloride (CsCl) and strontium chloride ($SrCl_2$) from the lithium chloride-potassium chloride (LiCl-KCl) salt was studied using a melt crystallization process similar to the reverse vertical Bridgeman growth technique. A ternary $SrCl_2-LiCl-KCl$ salt was explored at similar growth rates (1.8-5 mm/h) and compared with CsCl ternary results to identify similarities. Quaternary experiments were also conducted and compared with the ternary cases to identify trends and possible limitations to the separations process. In the ternary case, as much as 68% of the total salt could be recycled per batch process. In the quaternary experiments, separation of Cs and Sr was nearly identical at the slower rates; however, as the growth rate increased, $SrCl_2$ separated more easily than CsCl. The quaternary results show less separation and rate dependence than in both ternary cases. As an estimated result, only 51% of the total salt could be recycled per batch. Furthermore, two models have been explored to further understand the growth process and separation. A comparison of the experimental and modeling results reveals that the nonmixed model fits reasonably well with the ternary and quaternary data sets. A dimensional analysis was performed and a correlation was identified to semipredict the segregation coefficient.

Preparation and Characteristics of Maleated Polyethylene Modified with Poly(dimethylsiloxane) (Poly(dimethylsiloxane) 변성 Maleated Polyethylene의 제조와 그 특성)

  • Lee Byoung-Chul;Kang Doo-Whan
    • Polymer(Korea)
    • /
    • v.30 no.3
    • /
    • pp.224-229
    • /
    • 2006
  • Quaternary ammonium salt terminated silane was prepared from aminopropyldimethylethoxysilane with methyliodide and ionized 7,7,8,8-tetracyanoquinodimethane $(Li^+TCNQ^-)$ was prepared from TCNQ with methyliodide and lithium iodide. Quaternary ammonium salt silane-TCNQ adduct (ST) was prepared by reacting quaternary ammonium salt terminated silane with $Li^+TCNQ^-$ solution. Poly (dimethylsiloxane)-ST adduct (PST) was prepared by condensation of $\alpha,\omega-hydroxyl$ group terminated poly (dimethylsiloxane) (PDMS) with ST. Maleated polyethylene modified with PDMS (PST-g-MPE) was prepared by melt polymerization of maleated PE and PST in internal mixer and PST-g-MPE/carbon black (CB) and MPE/CB composites were prepared by compounding PST with MPE and PST-g-MPE, respectively. The thermal and mechanical properties of the composites were measured and dispersion characteristics of CB in matrix rosins show that the dispersion of CB in PST-g-MPE/CB was better than that of MPE/CB composite.

Corrosion Behavior of Inconel Alloys in a Hot Lithium Molten Salt under an Oxidizing Atmosphere (고온 리튬용융염계 산화분위기에서 Inconel 합금의 부식거동)

  • Cho, Soo-Hang;Seo, Chung-Seok;Yoon, Ji-Sup;Park, Seoung-Won
    • Korean Journal of Materials Research
    • /
    • v.16 no.9
    • /
    • pp.557-563
    • /
    • 2006
  • The electrolytic reduction of spent oxide fuel involves the liberation of oxygen in a molten LiCl electrolyte, which results in a chemically aggressive environment that is too corrosive for typical structural materials. So, it is essential to choose the optimum material for the process equipment handling molten salt. In this study, corrosion behavior of Inconel 713LC, MA 754, X-750 and 718 in the molten salt $LiCl-Li_2O$ under an oxidizing atmosphere was investigated at $650^{\circ}C$ for $72{\sim}216$ hours. Inconel 713LC alloy showed the highest corrosion resistance among the examined alloys. Corrosion products of Inconel 713LC were $Cr_2O_3,\;NiCr_2O_4$ and NiO, and those of Inconel MA 754 were $Cr_2O_3\;and\;Li_2Ni_8O_{10}$ while $Cr_2O_3,\;NiFe_2O_4\;and\;CrNbO_4$ were produced from Inconel 718. Also, corrosion products of Inconel X-750 were found to be $Cr_2O_3,\;NiFe_2O_4\;and\;(Cr,Nb,Ti)O_2$. Inconel 713LC showed local corrosion behavior and Inconel MA 754, 718, X-750 showed uniform corrosion behavior.

Necessity of Waste Salt Regeneration in Pyroprocessing (I) - In View of Waste Reduction - (건식처리에서 염폐기물 재생공정 필요성 (I) - 폐기물 감량 측면 -)

  • 김정국;김인태;박근일;권상운;유재형;김준형
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2003.11a
    • /
    • pp.180-185
    • /
    • 2003
  • The reductions in final waste form and material costs, which were induced from an introduction of salt waste regeneration system, have been estimated and compared with those of the present pyrochemical process, which is under development in KAERI. The results calculated on the basis of published data and proper assumption showed that the final waste form of LiCl waste from the Advanced Conditioning Process would be reduced about 3.7 to#ton HM (from 5.4 to 1.7 ton/ton HM). For the case of LiCl-KCl eutectic salt waste from the electro-refining process, the final waste form would be reduced 2.3 ton/ton U. Thus, these estimation suggested that the introduction of salt waste regeneration system was essential to improve the economical efficiency of the pyrochemical process.

  • PDF

Pyro-Electrochemical Reduction of a Mixture of Rare Earth Oxides and NiO in LiCl molten Salt (LiCl 용융염에서 NiO를 혼합한 희토류 산화물의 파이로 전해환원 특성)

  • Lee, Min-Woo;Jeong, Sang Mun
    • Korean Chemical Engineering Research
    • /
    • v.55 no.3
    • /
    • pp.379-384
    • /
    • 2017
  • An electrochemical reduction of a mixture of NiO and rare earth oxides has been conducted to increase the reduction degree of rare earth oxides. Cyclic voltammetry (CV) measurement was carried out to determine the electrochemical reduction behavior of the mixed oxide in molten LiCl medium. Constant voltage electrolysis was performed with various supplied charges to understand the mechanism of electrochemical reduction of the mixed oxide as a working electrode. After completion of the electrochemical reduction, crystal structure of the reaction intermediates was characterized by using an X-ray diffraction method. The results clearly demonstrate that the rare earth oxide was converted to RE-Ni intermetallics via co-reduction with NiO.

Effect of the Anode-to-Cathode Distance on the Electrochemical Reduction in a LiCl-Li2O Molten Salt

  • Choi, Eun-Young;Im, Hun-Sook;Hur, Jin-Mok
    • Journal of the Korean Electrochemical Society
    • /
    • v.16 no.3
    • /
    • pp.138-144
    • /
    • 2013
  • Electrochemical reductions of $UO_2$ at various anode-to-cathode distances (1.3, 2.3, 3.2, 3.7 and 5.8 cm) were carried out to investigate the effect of the anode-to-cathode distance on the electrochemical reduction rate. The geometry of the electrolysis cell in this study, apart from the anode-to-cathode distance, was identical for all of the electrolysis runs. Porous $UO_2$ pellets were electrolyzed by controlling a constant cell voltage in molten $Li_2O-LiCl$ at $650^{\circ}C$. A steel basket containing the porous $UO_2$ pellets and a platinum plate were used as the cathode and anode, respectively. The metallic products were characterized by means of a thermogravimetric analyzer, an X-ray diffractometer and a scanning electron microscope. The electrolysis runs conducted during this study revealed that a short anode-to-cathode distance is advantageous to achieve a high current density and accelerate the electrochemical reduction process.